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Abstract The standard cosmological model, based on Cold
Dark Matter and Dark Energy (ΛCDM), faces several chal-
lenges. Among these is the need to adjust the scenario to
account for the presence of vast voids in the large-scale struc-
ture of the universe, as well as the early formation of the
first stars and galaxies. Additionally, the observed matter–
antimatter asymmetry in the universe remains an unresolved
issue. To address this latter question, Andrei Sakharov pro-
posed a twin universe model in 1967. Building upon this
idea and introducing interactions between these two universe
sheets through a bimetric model, we propose an alternative
interpretation of the large-scale structure of the universe,
including its voids and the acceleration of cosmic expansion.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . .
2 The physical interpretation of time inversion (T-

symmetry) . . . . . . . . . . . . . . . . . . . . . . .
3 Geometrical interpretation of electric charge . . . . .
4 Matter–antimatter symmetry (C-symmetry) . . . . . .
5 Group associated with A. Sakharov’s model: the

Janus group . . . . . . . . . . . . . . . . . . . . . . .
6 Topology of the Janus model . . . . . . . . . . . . . .
7 Introducing negative masses: first approach . . . . . .
8 A paradigm shift to escape the crisis of today’s cosmology
9 Foundation of the Janus cosmological model . . . . .
10Construction of a time-dependent, homogeneous and

isotropic solution . . . . . . . . . . . . . . . . . . . .
11Interaction laws and observational consequences . . .

a e-mail: jean-pierre.petit@manaty.net
b e-mail: florent.margnat@univ-poitiers.fr (corresponding author)
c e-mail: hicham.zejli@manaty.net

12The mathematical and physical consistency of the model
12.1 Newtonian approximation of the field generated

by a positive mass M . . . . . . . . . . . . . . .
12.2 Newtonian approximation of the field generated

by a negative mass M̄ . . . . . . . . . . . . . . .
13Dipole repeller prediction . . . . . . . . . . . . . . .
14Beyond the Newtonian approximation . . . . . . . . .
15Conclusion . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

Between 1967 and 1980, the physicist Andreï Sakharov pub-
lished several papers [18–20] in which he presented a cosmo-
logical model with two universes, connected by an initial sin-
gularity: the Big Bang. The first universe corresponds to ours,
while the second is described by Sakharov as a twin universe.
The “arrows of time” of these two universes are antiparallel,
and they are “enantiomorphic”, that is, mirrored. Through
this model, Sakharov proposed a possible explanation for the
apparent absence of primordial antimatter in our universe.

For more than half a century, cosmology has been unable
to solve one of its greatest enigmas: not only has no con-
vincing explanation been found as to why one particle of
matter in a million escaped total annihilation with antimat-
ter, but no significant observation of a corresponding amount
of primordial antimatter has been made.

Sakharov was interested in the violation of CP-symmetry,
a fundamental property of the laws of physics, and hypoth-
esized that a twin universe, where these violations would be
reversed, could exist. This model would thus restore a gen-
eralized symmetry on a large scale. Based on the fact that
matter is formed from the assembly of quarks and antimat-
ter from antiquarks, he supposed that in our universe, the
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reaction leading to the formation of matter would have been
slightly faster than the one leading to the formation of anti-
matter, while the inverse situation would occur in the twin
universe.

Thus, in our matter-dominated universe, there would
remain a small surplus of matter, accompanied by an equiv-
alent amount of free antiquarks. Symmetrically, in the twin
universe, one would find antimatter with a corresponding sur-
plus of free quarks. Although this model may seem exotic,
it nevertheless offers the only theoretical explanation pro-
posed so far to account for the disappearance of half of the
predicted cosmic content. Consequently, it seems legitimate
to examine in detail the aspects and implications of such a
model.

This article revisits the pioneering work of Andreï Sakharov
and proposes a new cosmological model, inspired by his
approach, in which two folds of the universe are connected
by the same initial singularity, folded over one another and
interacting through gravitational effects. It puts this work
in perspective with modern concepts to address some of the
challenges posed by the standard cosmological model, partic-
ularly those of the ΛCDM model. This model offers potential
explanations for phenomena such as the acceleration of cos-
mic expansion or the existence of large-scale structures like
cosmic voids.

Our paper is structured around several key sections. The
first explores T-symmetry, which corresponds to time rever-
sal, based on the mathematical framework of the Poincaré
group. This symmetry is related to the existence of particles
with negative mass and energy, at the core of the bimetri-
cal Janus model, inspired by the work of J.-M. Souriau. It
plays a central role in the dynamics of this double spacetime,
where time reversal opens the door to a new interpretation of
physical phenomena [22,24].

Next, C-symmetry, associated with charge conjugation,
is extended within the framework of an additional dimen-
sion through the Kaluza–Klein model. This extension allows
the interpretation of electric charge as a geometric compo-
nent, in accordance with Noether’s theorem. This connection
between the extra dimension and charge conservation offers
a new perspective on charged particles in a five-dimensional
spacetime, where charge naturally emerges from geometry
[24].

The model is enriched by the introduction of the Janus
restricted group, which extends the Kaluza space to sev-
eral compactified dimensions. This dynamic group links
the matter–antimatter symmetry (C-symmetry) to the inver-
sion of quantum charges in a multidimensional framework.
Through this extension, the group’s geometry allows for the
understanding of the quantization of several charges, includ-
ing electric charge, and opens the way to the emergence
of new quantum charges. This section establishes a con-
nection between Souriau’s work and the Kaluza–Klein for-

malism to explain complex physical phenomena in a higher-
dimensional spacetime [9,21,23,24].

The Janus dynamic group, which combines PT-symmetry
(simultaneous inversion of energy, time, and spatial coor-
dinates) and C-symmetry (charge conjugation), allows the
modeling of interactions between matter, antimatter, and neg-
ative mass particles. Thanks to Noether’s theorem, this group
associates scalar invariants with the observed symmetries,
thus clarifying the interactions between these different enti-
ties within a bimetrical framework, and allowing the exten-
sion of Sakharov’s model by adding compactified dimensions
for each quantum charge [16,18,24].

To illustrate this concept, in the context of our study on
bimetric models, we proposed a model of wormhole link-
ing two PT-symmetric folds of the universe via a modified
Einstein–Rosen bridge [10]. This model includes a cross term
dr dt in the corresponding metric, leading to a finite free-fall
time to the wormhole’s throat for an external observer. The
two folds are CPT-symmetric for photons, which are neu-
tral particles. This wormhole model allows for unidirectional
traversal through its throat, inducing a space-time inversion.
This opens the possibility of interactions between matter and
antimatter, arising from the PT symmetry observed during the
transition between the two universe folds. Thus, the congru-
ent identification of points on the two universe folds and the
reversal of the arrow of time induce an inversion of energy,
offering new insights into the structure of space-time and
the potential inversion of particle mass while crossing this
bridge.

The Janus model will also be studied from a topolog-
ical perspective, with a closed universe geometry where
P and T symmetries naturally emerge. Spacetime is mod-
eled by a compact universe with the topology of a 4-
dimensional sphere S

4, which forms a two-fold cover of the
projective space P

4. In this structure, the antipodal points,
representing the Big Bang and the Big Crunch, coincide.
By replacing these singularities with a tubular structure,
they disappear, allowing P and T symmetries to emerge
as natural consequences of this closed projective geometry
(P4) and be interpreted in a purely topological framework
[3,13,15].

One of the earliest attempts to introduce negative masses
into a cosmological model, explored by H. Bondi in 1957,
showed that the coexistence of positive and negative masses,
which respectively induce attraction and repulsion, leads
to the “runaway effect” [2]. In this effect, a positive
mass and a negative mass attract gravitationally while
moving away from each other, thus violating the action-
reaction principle. This effect has remained a major chal-
lenge for integrating negative masses into standard cosmol-
ogy.

Thus, to resolve the crisis of modern cosmology, the
Janus model proposes a paradigm shift. Since the 1970s,
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the ΛCDM model has failed to explain certain observed
phenomena, such as the rotation speeds of galaxies and
the acceleration of cosmic expansion. The Janus model,
based on a bimetrical geometry with positive and negative
masses evolving on distinct geodesics, offers an alterna-
tive. It proposes a new approach to solving anomalies such
as the rapid formation of galaxies after the Big Bang and
discrepancies in the measurement of the Hubble constant
[6,8].

The Janus model proposes a bimetrical system where grav-
itational interactions between positive and negative masses
are described by distinct field equations, each associated with
its own metric. The construction of a homogeneous, isotropic,
and time-dependent solution in the Janus model relies on
FLRW-type metrics, respectively describing the universes of
positive and negative masses. A common energy conserva-
tion relation is established, proposing an exact solution for
dust universes, where the observed cosmic acceleration is
interpreted as a negative total energy. Numerical compar-
isons confirm the model’s compatibility with observations,
as illustrated by the magnitude-redshift curve. The interac-
tion laws in the Janus model reveal that masses of the same
sign attract, while those of opposite signs repel, thus elim-
inating the “runaway effect”. The model reproduces local
observations of general relativity while replacing dark mat-
ter and dark energy with invisible negative masses. These
negative masses form void-like structures that confine posi-
tive mass, accelerating star and galaxy formation in the first
few hundred million years, in agreement with data from the
James Webb telescope and observations of large cosmic voids
[4,12,14,16,17].

Finally, the mathematical consistency of the Janus model
is demonstrated in the weak field limit, thanks to the gen-
eralized conservation of energy and the Bianchi identities.
The calculation of Schwarzschild metrics for positive and
negative masses shows that masses of the same sign attract,
while those of opposite signs repel. The model satisfies the
Tolman–Oppenheimer–Volkoff equations in the Newtonian
approximation, while remaining compatible with cosmolog-
ical observations. It is also valid in regions dominated by neg-
ative masses, such as the dipole repeller, where it predicts a
negative gravitational lensing effect, dimming the luminosity
of background objects [1,8,10,11].

In summary, the Janus cosmological model proposes an
extension of general relativity by introducing two distinct
metrics, each associated with a type of mass, allowing for
the explanation of both the acceleration of the universe’s
expansion and certain large-scale structures, while remain-
ing compatible with local observations of general relativity.
This analysis opens new perspectives and places the Janus
model among the approaches that can be tested by modern
cosmological observations.

2 The physical interpretation of time inversion
(T-symmetry)

The T-symmetry refers to the inversion of the time coordi-
nate. In 1970, contributing to the development of symplectic
geometry and its application to physics, mathematician J.-M.
Souriau provided the physical interpretation of this inversion
of the time coordinate [24]. The Gram matrix defining the
Minkowski space is:

G =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (1)

Its isometry group is the Poincaré group:
(
L C
0 1

)
, (2)

where L is the matrix representing the Lorentz group Lor
which describes how spacetime coordinates change between
different inertial frames. These transformations include rota-
tions in space as well as Lorentz transformations (boosts),
which are changes of reference frames moving at a constant
speed relative to each other. It is axiomatically defined by:

LTGL = G, (3)

and C is the quadrivector of space-time translations in R
1,3

as follows:

C =

⎛
⎜⎜⎝

�t
�x
�y
�z

⎞
⎟⎟⎠ . (4)

It acts on points in Minkowski space:

ξ =

⎛
⎜⎜⎝
t
x
y
z

⎞
⎟⎟⎠ . (5)

This Lie group with 10 independent parameters1 is the
isometry group of this space, defined by its metric:

ds2 = dt2 − dx2 − dy2 − dz2. (6)

The Lorentz group Lor has four connected components:

• Lorn is the neutral component (its restricted subgroup),
does not invert either space or time and is defined by:

Lorn = {L ∈ Lor, det(L) = 1 ∩ [L]00 ≥ 1}
1 Including the 6 independent parameters of the Lorentz group (3 rota-
tions and 3 boosts) and 4 independent transformations, which are trans-
lations in the 4 directions of Minkowski space.
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• Lors inverts space and is defined by:

Lors = {L ∈ Lor, det(L) = −1 ∩ [L]00 ≥ 1}

• Lort inverts time but not space and is defined by:

Lort = {L ∈ Lor, det(L) = 1 ∩ [L]00 ≤ −1}

• Lorst inverts both space and time and is defined by:

Lorst = {L ∈ Lor, det(L) = −1 ∩ [L]00 ≤ −1}

And we have:

Lor = Lorn ∪ Lors ∪ Lort ∪ Lorst . (7)

The first two components are grouped to form the so-called
“orthochronous” subgroup:

Loro = Lorn ∪ Lors . (8)

It includes P-symmetry, which poses no problem for physi-
cists who know that there are photons of “right” and “left”
helicity whose motions are derived from this symmetry. This
corresponds to the phenomenon of the polarization of light.

The last two components form the subset“retrochronous”
or “antichronous”, whose components invert time:

Lora = Lort ∪ Lorst . (9)

Thus, we have:

Lor = Loro ∪ Lora . (10)

Note that:

Lort = −Lors Lorst = −Lorn . (11)

The Poincaré group inherits the properties of the Lorentz
group and thus has four connected components, it is defined
by:

g :=
{(

L C
0 1

)
, L ∈ Lor ∩ C ∈ R

1,3
}

, (12)

acting on Minkowski space as follows:

g(X) = L .X + C. (13)

The action of the group on its space of moments is the
action on the dual of the Lie algebra of the group2. The ele-
ment of the Lie algebra is obtained by differentiating the ten

2 Souriau’s approach, thanks to the Poincaré group which is the isom-
etry group of Minkowski space encompassing the Lorentz group (with
its four connected components), allows the parameters associated with
each of these motions, whose representative points belong to a vector
space, the space of moments, to emerge. The dimension of this space is
equal to that of the group: ten. Indeed, the Lorentz group is made up of
transformations that preserve the quadratic form of space-time. It con-
sists of the orthochronous Lorentz transformations and the translation
group. The transformations of the orthochronous Lorentz group have 6

components of the group. Souriau designates by the Greek
letter Λ the differential of the square matrix Z representing
the element of the Poincaré group, and by the Greek letter Γ

the element of the subgroup of spatio-temporal translations3:

Z :=
{(

Λ Γ

0 0

)
, Λ̄ = −Λ ∩ Γ ∈ R

1,3
}

. (14)

The elements of the Lorentz group act on points in space-
time, transforming one motion into another. By applying an
element L of the Lorentz group to a given motion, we obtain
a new motion. The neutral component Lorn is a subgroup
containing the identity matrix that inverts neither space nor
time.

Let’s consider the 4-component matrix ω made up of two
parameters λ1 and λ2:

ω(λ1,λ2) =

⎛
⎜⎜⎝

λ1 0 0 0
0 λ2 0 0
0 0 λ2 0
0 0 0 λ2

⎞
⎟⎟⎠ with

{
λ1 = ±1

λ2 = ±1
(15)

Thus, the four components of the Lorentz group can be easily
expressed using the four possible combinations of these two
parameters applied to its neutral component, of which an
element Ln ∈ Lorn is expressed according to the expression
L = ωLn :

ω(1,1) × Ln =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∈ Lorn

ω(1,−1) × Ln =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ∈ Lors

ω(−1,1) × Ln =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∈ Lort

ω(−1,−1) × Ln =

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ∈ Lorst (16)

We note that λ1 = −1 inverts time while λ2 = −1
inverts space. The four components are grouped into two

Footnote 2 continued
degrees of freedom, while the translation group has 4 degrees of free-
dom. This structure leads to 10 independent parameters of the Poincaré
group. By combining them into an antisymmetrical matrix called a tor-
sor, the parameters of the space of motions can thus be defined.
3 (13.54) of [24]. He then writes μ, an element of the space of motions,
in the form (13.57) and expresses the invariance in the form of the
constancy of the scalar (13.58), where M is an antisymmetric matrix.
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subsets “orthochronous” and “retrochronous” according to
the respective expressions (8) and (9).

The Poincaré group can then be written according to these
four connected components as follows:

g :=
{(

ωLn C
0 1

)
, ωLn ∈ Lor ∩ C ∈ R

1,3
}

. (17)

Thus, the action of this Poincaré group on the spacetime
coordinates yields the following space of motions:
[
ωLn C

0 1

]
×
[
ξ

1

]
=
[
ωLnξ + C

1

]
. (18)

Indeed, this describes the action of the Poincaré group on
its space of moments μ, consisting of ten independent scalar
quantities:

• The energy E ,
• The momentum p = {px , py, pz},
• The passage f = { fx , fy, fz},
• The spin s = {lx , ly, lz}.

If we consider the motion of an object in space, such
motion is also defined by its moment μ. The physicist can
then apply an element G, for example from the Galilean
group, to this moment μ. This produces a new moment μ′.
This action can be written as follows:

μ′ = GμGT, (19)

where GT represents the transpose of this matrix G. μ is an
antisymmetric moment matrix of size 5×54 where the more
compact form is defined as follows:

μ =
(
M −P
PT 0

)
, (20)

with5:

M =

⎛
⎜⎜⎝

0 −lz ly fx
lz 0 −lx fy

−ly lx 0 fz
− fx − fy − fz 0

⎞
⎟⎟⎠ , P =

⎛
⎜⎜⎝

E
px
py
pz

⎞
⎟⎟⎠ . (21)

Then, by applying the action of the Poincaré group (12)
on the dual of its Lie algebra, i.e., on its space of moments,
we obtain the following action according to (19):

μ′ =
(
L C
0 1

)(
M −P
PT 0

)(
LT 0
CT 1

)
, (22)

μ′ =
(
LMLT − LPCT + CPTLT −LP

PTLT 0

)
. (23)

4 Meaning the symmetric elements with respect to the main diagonal
have opposite signs. The elements on the main diagonal are equal to
zero, as each is its own opposite.
5 M is the moment matrix associated with μ with dimensions 4 × 4,
and P , a four-vector energy-momentum with dimensions 4 × 1.

We can deduce6:

M ′ = LMLT + CPTLT − LPTC, (24)

and

P ′ = LP. (25)

Therefore, the torsor of Poincaré group is given by the dif-
ferent components of the space of moments7 as follows:

μ = {M, P} = {l, g, p, E}, (26)

where l is the angular momentum of M , g is the relativistic
barycenter of M , p is the linear momentum of P and E is
the energy of P .

Now, let’s consider for example the symmetry T, where
there is only a time inversion (λ1 = −1), without space
inversion (λ2 = 1), in a case where there is also no translation
in spacetime (C = 0). We thus have:

ω(−1,1) × Ln = Lt . (27)

Hence:

Lt × ξ =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
-t
x
y
z

⎞
⎟⎟⎠ . (28)

Thus, we obtain the action of time inversion in the space of
trajectories or in spacetime.

The second Eq. (25) sheds light on the physical signif-
icance of this inversion of the time coordinate. Indeed, the
application of the Lt component of the Lorentz group to the
motion of a particle gives:

P ′ = Lt P =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

E
px
py
pz

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−E
px
py
pz

⎞
⎟⎟⎠ . (29)

Therefore, we can deduce that the application of the Lt com-
ponent of theLorentz group to the motion of a particle induces
an inversion of its energy from E to −E.

The T symmetry applied to the motion of a particle inverts
its energy which leads to mass inversion8 following the def-
inition of the mass9 as:

m =
√
PT · P sgn(E). (30)

A very detailed commentary on the work can be found in
reference [22]. The approach is based on the introduction of
the space of motions as a dual of the Lie algebra of the group.

6 (13.107) of [24].
7 (13.57) of [24].
8 page 198–199 of [24].
9 (14.57) on page of [24].
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In this context, we uncover the physical interpretation of
the model proposed by A. Sakharov: the second universe
in his framework could consist of particles possessing both
negative energy and negative mass.

To further extend the interpretation of fundamental sym-
metries, we now turn our attention to C-symmetry, which is
associated with charge conjugation. By introducing a higher-
dimensional framework inspired by Kaluza–Klein theory,
we can offer a geometrical interpretation of electric charge,
according to Noether’s theorem. This will allow us to explore
the relationship between spacetime transformations and the
emergence of electrically charged particles.

3 Geometrical interpretation of electric charge

The geometrical interpretation of C-symmetry, which is syn-
onymous with charge conjugation and matter–antimatter
duality, was provided by J.-M. Souriau in 1964 in chapter
V of reference [24].

Let’s apply an extension of the Poincaré group to form the
following dynamic group:

g :=
⎧⎨
⎩

⎛
⎝

1 0 φ

0 L C
0 0 1

⎞
⎠ , φ ∈ R ∩ L = λLo ∈ Lor ∩ λ

= ±1 ∩ C ∈ R
1,3

⎫⎬
⎭ . (31)

Starting from Minkowski space:

ξ =

⎛
⎜⎜⎝
t
x
y
z

⎞
⎟⎟⎠ =

(
t
r

)
, (32)

let’s introduce Kaluza space10 that incorporates a 5×5 Gram
matrix:

Γ =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠

=
(
G 0
0 −1

)
where

G =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (33)

In the considered group, we just add a translation φ to the
fifth dimension ζ . Thus, the dimension of the group becomes

10 Kaluza space is a hyperbolic Riemannian manifold with signature
(+ − − − −).

11. It is the isometry group of Kaluza space, defined by its
metric:

ds2 = dXTΓ dX = dt2 − dx2 − dy2 − dz2 − dζ 2, (34)

with:

X =
(

ξ

ζ

)
=

⎛
⎜⎜⎜⎜⎝

t
x
y
z
ζ

⎞
⎟⎟⎟⎟⎠

. (35)

According to Noether’s theorem,11 this new symmetry is
accompanied by the invariance of a scalar that we will call
q. The torsor of this Kaluza group then incorporates an addi-
tional parameter:

μ = {M, P, q} = {l, g, p, E, q}. (36)

Let’s introduce the action of the group on its Lie algebra:

Z ′ = g−1Zg. (37)

If we consider an element of the Lie algebra of this group:

Z =
⎛
⎝

0 0 δφ

0 Gω γ

0 0 0

⎞
⎠ Z ′ =

⎛
⎝

0 0 δφ′
0 Gω′ γ ′
0 0 0

⎞
⎠ , (38)

we obtain:

Z ′ =
⎛
⎝

0 0 δφ′
0 Gω′ γ ′
0 0 0

⎞
⎠ =

⎛
⎝

0 0 δφ

0 L−1GωL L−1GωC + L−1γ

0 0 0

⎞
⎠ .

(39)

This allows us to deduce the action of the following group:

q ′ = q, (40)

M ′ = LMLT − LPCT + CPTLT, (41)

P ′ = LP. (42)

If we identify q as the electric charge, this would show that
the motion of a massive particle in a five-dimensional space
would transform it into an electrically charged particle.

The interpretation of C-symmetry within a higher-dimen-
sional framework, as explored, leads naturally to a broader
geometric understanding of symmetries in the Janus model.
Specifically, the notion of charge conjugation extends to
encompass the duality between matter and antimatter. To
develop this further, we now introduce the Janus restricted
group, which provides a formal structure to describe these

11 Noether’s theorem states that for every continuous symmetry of a
physical action, there exists a conserved quantity. In our context, if
a new symmetry ensures the invariance of a scalar q, this scalar is
the conserved quantity. This means that q remains constant when the
symmetry is applied to the system’s action.
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symmetries. This group allows us to explore how quantum
charges can be inverted by compactified dimensions, linking
the symmetry properties of spacetime to the emergence of
quantized charges and new quantum numbers.

4 Matter–antimatter symmetry (C-symmetry)

Let’s introduce the Janus restricted group as follows:

g :=
⎧⎨
⎩

⎛
⎝

μ 0 φ

0 L C
0 0 1

⎞
⎠ , μ = ±1 ∩ φ ∈ R ∩ L = λ

Lo ∈ Lor ∩ λ = ±1 ∩ C ∈ R
1,3

⎫⎬
⎭ . (43)

The action of the group on the coordinates of the 5-
dimensional spacetime defined by (35) yields the space of
the following motions:
⎛
⎝

μ 0 φ

0 L C
0 0 1

⎞
⎠
⎛
⎝

ζ

ξ

1

⎞
⎠ =

⎛
⎝

μζ + φ

Lξ + C
1

⎞
⎠ . (44)

A similar calculation to the previous one yields the action of
the group:

q ′ = μq, (45)

M ′ = LMLT − LPCT + CPTLT, (46)

P ′ = LP. (47)

This group acts on the five-dimensional Kaluza space. We
observe that μ = −1 reverses the fifth dimension ζ and the
scalar q.

Through a dynamic interpretation of the group, we find the
idea suggested by J.-M. Souriau [24]: the inversion of the fifth
dimension is associated with the inversion of electric charge.
However, this is only one of the quantum charges. Indeed,
the C-Symmetry translating the “matter–antimatter” sym-
metry introduced by Dirac [5], reverses all quantum charges.
This inversion operation is only obtained by adding as many
compactified dimensions as there are quantum charges. The
action of the group on the coordinates of n-dimensional
spacetime yields the space of the following motions:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ 0 0 · · · 0 φ1

0 μ 0 · · · 0 φ2

0 0
. . . · · · 0

...
...

... · · · μ 0 φ p

0 0 · · · 0 L C
0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ζ 1

ζ 2

...

ζ p

ξ

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μζ 1 + φ1

μζ 2 + φ2

...

μζ p + φ p

Lξ + C
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (48)

Fig. 1 Inversion of the winding direction of a particle’s motion reflect-
ing the C-symmetry

The torsor of this group incorporates several additional
scalars q p:

μ = {M, P,

p∑
1

qi } = {l, g, p, E, q1, q2, . . . , q p}. (49)

This allows us to obtain the action of the group on its momen-
tum space:

q ′1 = μq1, (50)

q ′1 = μq1, (51)

· · · (52)

q ′ p = μq p, (53)

M ′ = LMLT − LPCT + CPTLT, (54)

P ′ = LP. (55)

Moreover, Souriau considers that electric charge can be
geometrically quantized into discrete values (+e, 0,−e)
when the associated fifth dimension is closed.

Imagine representing motion in Minkowski space along a
simple straight line oriented in time. At each point, we add
a closed dimension, which extends Minkowski space into a
bundle. In Fig. 1, it is represented as a cylinder.

But in approach [21], these transformations no longer a
priori preserve the electric charge q, which then becomes
dependent on the chosen coordinate system. In reference
[21], taking up the approach initiated in [23], the author opts
for a closed fifth dimension, in which the radius of this “uni-
verse tube” becomes very small, of the order of Planck’s
length. He then rediscovers the invariance of electric charge
and concludes [21], we quote:

In this paper, we revisit the Kaluza–Klein theory from
the perspective of the classification of elementary parti-
cles based on the coadjoint orbit method. The keystone
conjecture is to consider the electric charge as an extra
momentum on an equal footing with the mass and the
linear momentum. We study the momentum map of the
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corresponding symmetry group Ĝ1 which conserves
the hyperbolic metric. We show that the electric charge
is not an invariant, i.e. it depends on the reference frame,
which is in contradiction with the experimental obser-
vations. In other words, it is not the symmetry group of
the Universe today as we know it. To avert this para-
dox, we scale the fifth coordinate and consider the limit
when the cylinder radius ω vanishes. For the corre-
sponding group Ĝ0 also of dimension 15, the charge is
an invariant then independent of the frame of reference
and the observer. On this ground, we propose a cosmo-
logical scenario in which the elementary particles of
the early Universe are classified from the momenta of
the group Ĝ1, next the three former dimensions inflate
quickly while the fifth one shrinks, leading to the 4D
era in which as today the particles are characterized
by the momenta of the group Ĝ0. By this mechanism,
the elementary particles can acquire electric charge as
a by-product of the 4 + 1 symmetry breaking of the
Universe. This work opens the way to the geometric
quantization of charged elementary particles.

The expression for this characteristic dimension of this uni-
versal tube is given in [23] on page 412:

e
h̄

e

√
χ

2π
, (56)

χ being the Einstein constant taken equal to [23]:

χ = −8πG

c2 = 1.856 × 10−27cm g−1. (57)

By introducing numerical values, this characteristic length
is 3.782 × 10−32cm. Dividing by 2π gives us the order of
magnitude of Planck’s length. In this view, the quantization of
electric charge and its constancy are derived from the closure
of the extra dimension associated with the decrease in the
characteristic dimension associated with it.

This group refers to an extension of the Poincaré group,
i.e. to a field-free, curvature-free universe. This construction
of a five-dimensional relativity was suggested in 1964 in ref-
erence [23] and has been taken up again more recently in
[21]. Note that it is in [23], page 413, that the link between
charge conjugation and fifth-dimensional inversion is first
mentioned.

By generalizing [9], we can envisage an extension of
space-time to a space with 4 + p dimensions, all of which
may see their characteristic dimensions reduced, like that of
this fifth dimension, each of these collapses leading to the
emergence and quantization of new quantum numbers, bary-
onic, leptonic, unique etc., the electric charge being only the
first of these.

Thus, the Janus restricted group has provided us with
a framework for understanding the matter–antimatter sym-
metry (C-symmetry) and the inversion of quantum charges

through additional compactified dimensions. We can now
extend it to a broader symmetry group associated with A.
Sakharov’s model, the Janus group, which incorporates both
C-symmetry and PT-symmetry. This extension allows us to
explore a dynamic group structure that includes negative
masses and antimatter within the framework of Sakharov’s
twin universe model.

5 Group associated with A. Sakharov’s model: the
Janus group

If we want to construct a group that translates the T-symmetry
invoked by Sakharov, we’ll replace Lo by λLo with λ = ±1.
But, as proposed in [16], we can translate what had already
been proposed [18], we quote:

All phenomena corresponding to t < 0 are, in this
hypothesis, assumed to be CPT images of phenomena
corresponding to t > 0.

Then, by introducing a new symmetry to the previous Janus
restricted group, which we can call PT Symmetry allowing
the conversion of matter into antimatter with negative mass12,
we thus combine C-symmetry and PT-symmetry to form the
Janus dynamic group as follows:

g :=
⎧⎨
⎩

⎛
⎝

λμ 0 φ

0 λLo C
0 0 1

⎞
⎠ ,

λ, μ ∈ {−1, 1} ∩ φ ∈ R ∩ Lo ∈ Loro ∩ C ∈ R
1,3

⎫⎬
⎭ .(58)

We can consider that particles of matter and antimatter can
coexist in the same space fold. However, no coexistence is
possible for the motion of particles deduced by T-symmetry
(or PT-symmetry). This space is of dimension 4 + p (for
p quantum charges). We will therefore consider the two-
fold covering of this manifold Mn+p. In each of these two
folds, there remains a possibility to perform the symmetry
corresponding to μ = −1, that is, the inversion of all quan-
tum charges. In other words, the“matter–antimatter” duality
exists in both folds.

To understand the nature of the different components of
these folds, we will consider the motion of a particle of matter
with energy and mass:

• By acting on this motion with elements of the group cor-
responding to (λ = 1;μ = 1), we will obtain other
motions of particles of matter with positive mass and
energy.

12 A concept we could call antimatter in the sense of Feynman [7].
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• By acting on this motion with elements of the group cor-
responding to (λ = 1;μ = −1), we will obtain other
motions of antimatter particles with positive mass and
energy13.

• By acting on this motion with elements of the group cor-
responding to (λ = −1;μ = 1), we will obtain other
motions of particles of matter with negative mass and
energy.14

• By acting on this motion with elements of the group cor-
responding to (λ = −1;μ = −1), we will obtain other
motions of antimatter particles with negative mass and
energy15.

Its isometry group is that of Janus space, defined by the
same metric as structuring Kaluza space (34), and its dimen-
sion is 11.16 The torsor of the group is also the same as (36).
However, if we consider an element of the Lie algebra of this
group:

Z =
⎛
⎝

0 0 δφ

0 λGω γ

0 0 1

⎞
⎠ , (59)

we can then calculate Z ′ according to the relation (37) as
follows:

Z ′ =
⎛
⎝

0 0 δφ′
0 λGω′ γ ′
0 0 1

⎞
⎠

=
⎛
⎝

0 0 (λμ)δφ

0 λ3L−1
o GωLo λ2L−1

o GωC + λL−1
o γ

0 0 0

⎞
⎠ . (60)

Thus, by identification, we can deduce:

δφ′ = λμδφ, (61)

ω′ = λ2GL−1
o GωLo, (62)

γ ′ = λ2L−1
o GωC + λL−1

o γ. (63)

We know that:

L−1
o = GLT

o G. (64)

Then:

δφ′ = λμδφ,

ω′ = λ2LT
oωLo,

γ ′ = λ2GLT
oωC + λGLT

o Gγ.

(65)

13 These are “antimatter in the sense of Dirac” (C-symmetry).
14 CPT-symmetry.
15 These are “antimatter in the sense of Feynman” (PT-symmetry).
16 10 + 1 dimension associated with the fifth space dimension ζ that
J.-M. Souriau identifies with the electric charge q.

However, inspired by J.-M. Souriau, we could add as many
additional closed dimensions as quantum charges and write
the dynamic group as follows:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λμ 0 0 · · · 0 φ1

0 λμ 0 · · · 0 φ2

0 0
. . . · · · 0

...
...

... · · · λμ 0 φ p

0 0 · · · 0 λLo C
0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (66)

The isometry group of this space can be defined by the
following metric:

ds2 = (dt)2 − (dx)2 − (dy)2 − (dz)2 − (dζ 1)2

−(dζ 2)2 − · · · − (dζ p)2. (67)

With:

X =
(

ξ

ζ

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t
x
y
z
ζ 1

ζ 2

...

ζ p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (68)

The action of this Janus group on the coordinates of 10 + p
independant parameters then yields the space of the following
motions:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λμ 0 0 · · · 0 φ1

0 λμ 0 · · · 0 φ2

0 0
. . . · · · 0

...
...

... · · · λμ 0 φ p

0 0 · · · 0 λLo C
0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ζ 1

ζ 2

...

ζ p

ξ

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λμζ 1 + φ1

λμζ 2 + φ2

...

λμζ p + φ p

λLoξ + C
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(69)

According to Noether’s theorem, this new symmetry is
accompanied by the invariance of additional scalars q p.
Therefore, the torsor of the group integrates them accord-
ing to this relation:

μ = {M, P,

p∑
1

qi } = {l, g, p, E, q1, q2, . . . , q p}. (70)

Thus, the duality relation17 gives us:

1

2
Tr (M · ω) + PT · Gγ + δφ

p∑
1

qi

17 (13.58) from [24].

123



 1226 Page 10 of 24 Eur. Phys. J. C          (2024) 84:1226 

Fig. 2 A simplified 2D representation of a closed universe with a spher-
ical topology S

2, illustrating the temporal progression from the Big
Bang to the Big Crunch, with the universe reaching maximum spatial
extension in between

= 1

2
Tr (M

′ · ω′) + P ′T · Gγ ′ + δφ

p∑
1

q ′i . (71)

This allows us to deduce the action of the group by identifi-
cation with (65):

p∑
1

q ′i = λμ

p∑
1

qi , (72)

M ′ = LMLT − LPCT + CPTLT, (73)

P ′ = LP. (74)

Having established the Janus dynamic group as a natu-
ral extension of Sakharov’s model, which incorporates both
PT-symmetry and C-symmetry, we now shift our focus to
the topological implications of the Janus model. In partic-
ular, we will explore how the symmetries discussed earlier
can emerge from a closed, higher-dimensional universe. This
section delves into the topological structure of the model,
illustrating how P and T symmetries can arise naturally from
the geometry of a closed universe, modeled as a projective
space P

4.

6 Topology of the Janus model

Let’s consider a universe closed in all its dimensions, includ-
ing space and time (see Fig. 2).

Diametrically opposed, antipodal points can be brought
into coincidence. The image is then that of a P

2 projective.
The north and south poles, one representing the Big Bang
and the other the Big Crunch, come into coincidence. The

sphere cannot be paved without the presence of these two
singularities. The same applies to any sphere S2n if n is even,
especially if this dimension is 4. This geometry was proposed
in [13].

The Fig. 3 shows how this coincidence of antipodal
regions generates this T-symmetry. On the S

2 sphere, the
direction of time is given by the orientation of the merid-
ian curves. This orientation is shown on the left at the new
state of maximum expansion, when space is identified with
the sphere’s equator. During this folding of the S

2 sphere,
described in reference [15] page 65, the vicinity of this equa-
tor is configured as the two-folds cover of a Möbius strip with
three half-turns (see Fig. 3 on the right).

In Fig. 4, we evoke the appearance of T-symmetry by
manipulating the vicinity of a meridian line. In addition, we
evoke the possible elimination of the Big Bang - Big Crunch
double singularity by replacing them with a tubular passage,
which then gives this geometry the nature of the two-fold
cover of a Klein bottle (Fig. 4).

For enantiomorphy and P-symmetry to appear, the oper-
ation would have to be performed on a larger sphere. This
aspect can be highlighted by considering the conjunction of
antipodal regions in the vicinity of a meridian line, which is
then configured according to the two-fold covering of a half-
turn Möbius strip. The Fig. 5 illustrates this enantiomorphic
situation (Fig. 5).

By bringing the antipodal points of even-dimensional
spheres into coincidence, we locally create a configura-
tion associating two T-symmetrical folds. By adding further
dimensions, the coincidence of the antipodes creates a two-
fold CPT-symmetric coating configuration of a projective
space. In the case of the sphere S

2, which corresponds only
to a 2D didactic image, the image of the projective P

2 is its
immersion in, which corresponds to the surface described in
1903 by the German mathematician Werner Boy [3], see Fig.
6. In this figure, we show how the coincidence of the antipo-
dal points of the equator of the sphere S

2 gives the two-fold
covering of a Möbius ribbon with three half-turns (Fig. 6).

In this section, we have demonstrated that the P and T sym-
metries invoked by A. Sakharov can arise as consequences
of a purely topological structure, specifically the covering of
a projective space P

4.
After exploring the topological structure of the Janus

model, we now address a major consequence of T-symmetry:
the introduction of negative masses. According to Souriau,
the application of T-symmetry to the motion of a particle
inverts its energy, which leads to the inversion of its mass,18

in accordance with the definition of mass.19 Although this
idea is elegant, it presents significant challenges when inte-
grated into the framework of general relativity. In the follow-

18 pages 198–199 of [24].
19 (14.57) on page 346 of [24].
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Fig. 3 How the coincidence of
antipodal regions creates
T-symmetry. Drawing extracted
from [15], page 65

Fig. 4 Coincidence of
antipodal regions on a sphere S2,
according to the two-folds cover
of a half-turn Möbius strip, with
the appearance of T-symmetry

Fig. 5 P-symmetry as a
consequence of contacting
antipodal region neighborhoods
on an S

2 sphere
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Fig. 6 Boy’s surface,
immersion of the P

2 projective
in R

3

ing section, we will propose an initial approach to incorporat-
ing negative masses into the cosmological model, analyzing
the implications of their interaction with positive masses and
the resulting geodesics.

7 Introducing negative masses: first approach

Using dynamical group theory, we showed that this T-
symmetry was synonymous with the introduction of negative
masses into the cosmological model. A. Sakharov’s primor-
dial antimatter would therefore be endowed with negative
mass. This first step is far from anecdotal since, if we neglect
it, we admit to losing nothing less than half the universe from
the outset. Is it then possible to introduce negative masses into
the standard model of general relativity?

A first idea would be to consider that the field comes from
two sources, represented by two tensors, the first referring
to a positive mass content and the second to a negative mass
content:

Rμν − 1

2
Rgμν = χ

[
T (+)

μν + T (−)
μν

]
. (75)

We can then consider the metric solution corresponding to a
region where the field is created, firstly by a positive mass
content:

Rμν − 1

2
Rgμν = χT (+)

μν . (76)

Geodesics are given by a solution in the form of an external
metric:

ds2 =
(

1 − 2GM (+)

c2r

)
c2dt2

− dr2

1 − 2GM (+)

c2r

− r2
(

dθ2 + sin2 θdϕ2
)

. (77)

The geodesics evoke an attraction (see Fig. 7).
Now consider the field created by a negative mass M (−),

the field equation becomes then:

Rμν − 1

2
Rgμν = χT (−)

μν . (78)

And the solution corresponds to the metric:

ds2 =
(

1 + 2G|M (−)|
c2r

)
c2dt2

− dr2

1 + 2G|M (−)|
c2r

− r2
(

dθ2 + sin2 θdϕ2
)

. (79)

The geodesics then represent a repulsion (see Fig. 8).
In this context, our single field equation provides only a

single family of geodesics, which the test particles, with both
positive and negative masses, must follow. We deduce that:

• Positive masses attract both positive and negative masses.
• Negative masses repel both positive and negative masses.
• Two masses of identical absolute values but opposite

signs are brought together, the positive mass flees, pur-
sued by the negative mass. Both then accelerate uni-
formly, but without any energy input, since the energy
of the negative mass is itself negative. This result was
illustrated in 1957 by H. Bondi [2]. This phenomenon is
known as “runaway effect”. What’s more, this scheme
violates the action-reaction principle. In 1957, the con-
clusion was reached that it was physically impossible
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Fig. 7 Deflection of positive-energy neutrinos by a positive mass. The
trajectories, when passing near the mass, are deflected more strongly due
to the gravitational effect. The angle of deflection reaches its maximum
(C) when the neutrinos graze the edge of the mass. Trajectories further

away, such as (D), experience a weaker deflection, and the deflection
angle becomes null for trajectories passing at a very large distance from
the mass. The trajectory passing through the center of the mass (A)
remains undeflected due to the symmetry of the configuration

to include negative masses in the cosmological model.
This would only be possible at the price of a profound
paradigmatic shift, not by denying the achievements of
general relativity, but by considering its extension in a
wider geometric context.

After examining the introduction of negative masses and
their implications within the framework of general relativity,
we now turn to a broader cosmological context. The discov-
ery of anomalies, such as the dipole repeller and the accel-
erating expansion of the universe, has revealed significant
shortcomings in the standard model ΛCDM. Recent obser-
vations, particularly those made with the James Webb Space
Telescope, have intensified the crisis in cosmology by chal-
lenging long-held assumptions about galaxy formation. In
the following section, we will explore how the Janus cosmo-
logical model offers a paradigm shift capable of resolving
these issues by proposing a bimetrical structure for the uni-

verse, integrating both positive and negative masses into a
broader and more innovative geometric framework.

8 A paradigm shift to escape the crisis of today’s
cosmology

In the mid-1970s, the excessive rotation speeds of stars in
galaxies had already led specialists to propose the existence
of dark matter, ensuring their cohesion. In 2011, the discovery
that the cosmic expansion was accelerating was attributed
to a new, unknown ingredient known as dark energy. Over
the decades, all attempts to assign an identity to these new
components ended in failure.

In 2017 [8], Hélène Courtois, Daniel Pomarède, Brent
Tully and Yeudi Hoffman produced the first very-large-scale
mapping of the universe, in a cube of one and a half bil-
lion light-years across, with the Milky Way, our observation

Fig. 8 Deviation of
positive-energy photons by a
negative mass. The trajectories,
when the curvature remains
moderate, are very close to
hyperbolas. The angle of
deviation reaches a maximum
(C) when the geodesic is tangent
to the limit of the mass. It then
decreases steadily to zero at
very large distances (D). The
angle of deviation is null, due to
symmetry, when the geodesic
passes through the center of the
mass (A)
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point, at the center (see Fig. 9). By subtracting the radial
component of the velocity linked to the expansion motion,
they indicate the trajectories followed by the masses. A dipo-
lar structure appears. One formation, the Shapley attractor,
comprising hundreds of thousands of galaxies, attracts galax-
ies to itself. But, symmetrically to this formation, 600 million
light-years from the Milky Way, there is an immense void,
some one hundred million light-years across, which, on the
contrary, repels galaxies, and to which we give the name of
dipole repeller. To date, no theory has been able to explain
the existence of this vast void. While the idea of a gap in dark
matter, positive and attractive, has been evoked, it does not
hold water, as no mechanism has been found to give rise to
it. Since 2017, several other such voids have been detected
and located.

The launch of the James Webb Space Telescope has only
added to this crisis [6]. The Standard Model ΛCDM pro-
poses a hierarchical mechanism for the birth of stars and
galaxies. Gravitational instability appears as soon as matter
and radiation are decoupled. The scenarios for the forma-
tion of both stars and galaxies in this model make use of the
attributes conferred on hypothetical dark matter. But even
with these parameters, it is impossible to imagine galaxies
forming before a billion years. The Hubble Space Telescope
was already able to obtain images in the near infrared. Early
images of distant objects appeared to show groups of mini-
galaxies. But the James Webb Space Telescope showed that
these objects were nothing other than HII regions belonging
to barred spiral galaxies, fully formed, hosting old stars, only
500 million years old.

For decades, the Standard Model ΛCDM has relied
on its ability to account for CMB fluctuations as gravito-
acoustic oscillations, by adapting the numerous parameters
relating to dark matter, dark energy and, in particular, the
value of the Hubble constant. This desire to match obser-
vational data has resulted in a Hubble constant value of
67 Km s−1 Mpc−1. This is significantly lower than the value
of 70 Km s−1 Mpc−1 deduced from direct observation of
standard candles.

All these factors are creating a deep crisis within the spe-
cialist community, and some voices are beginning to be heard,
suggesting the need to consider a profound paradigm shift.
This is what the Janus cosmological model20 proposes.

Since we are unable to introduce negative masses into the
general relativity model, let’s consider a profound change
of geometric paradigm, already evoked in the previous sec-
tions under the aspect of group theory and topology. The
motion of positive masses, immersed in the gravitational
field, takes place according to geodesics that we consider
to be derived from a first metric gμν . We will therefore
describe the motion of negative masses using a second set

20 See Sect. 9 where this model is developped.

of geodesics, derived from a second metric gμν . We thus
have a manifold, whose points are marked by the coordinates
{x0, x1, x2, x3}, equipped with a pair of metrics (gμν, gμν).
We shall neglect the action of electromagnetic fields and con-
sider only the field of gravity. From the metrics and we can
construct Ricci tensors Rμν and Rμν and their associated
Ricci scalars R and R.

As the Janus model proposes a paradigm shift by intro-
ducing a bimetric structure to account for both positive and
negative masses, we will now focus on the foundational math-
ematical structure underlying this model. The Janus cosmo-
logical model builds upon the interaction between two enti-
ties, i.e. positive and negative mass populations, each associ-
ated with its respective metric. In the following section, we
will explore the formulation of the action and field equations
governing this interaction, and how these coupled systems
lead to a coherent description of cosmic phenomena, offer-
ing an alternative to the limitations of the standard model
ΛCDM.

9 Foundation of the Janus cosmological model

To build this model, let us now consider the interaction
between two entities: ordinary matter with positive mass
interacting with negative mass through gravitational effects.
This model involving negative mass takes into account the
influence of both dark matter and dark energy.

We can describe this system of two entities with respective
metrics gμν and ḡμν . Let R and R be the corresponding Ricci
scalars. We then consider the following two-layer action21:

A =
∫
E

(
1

2χ
R + S + S

)√|g| d4x

+
∫
E

(
κ

2χ̄
R + S + S

)√|ḡ| d4x . (80)

The terms S and S will give the source terms related to
the populations of the two entities, while the terms S and S
will generate the interaction tensors. χ and χ̄ are the Ein-
stein gravitational constants for each entity. g and ḡ are the
determinants of the metrics gμν and ḡμν . For κ = ±1, we
apply the principle of least action. The Lagrangian derivation

21 Integration over E using the element d4x is a method for com-
puting the total action in the bimetric spacetime, reflecting the four-
dimensional nature of this bimetric universe. This implies considering
the entire spacetime as the domain of integration, integrating the con-
tributions from each point to the action. The term d4x represents an
infinitesimal element of hypervolume of this bimetric spacetime, used
to measure each segment during integration. Thus, it is a multiple vol-
ume integral performed over the four dimensions of spacetime, accu-
mulating contributions to the total action from each four-dimensional
volume segment corresponding to each metric.
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Fig. 9 Location of the dipole repeller within the large-scale structure of the universe [8]. The dipole repeller is a hypothesized region of space
where galaxies are pushed away from, counteracting the attractive force of the Shapley Supercluster

of this action gives us:

0 = δA,

=
∫
E

δ

(
1

2χ
R + S + S

)√|g| d4x

+
∫
E

δ

(
κ

2χ̄
R + S + S

)√|ḡ| d4x,

=
∫
E

δ

[
1

2χ

(
δR

δgμν
+ R√|g|

δ
√|g|
δgμν

)

+ 1√|g|
δ(

√|g|S)

δgμν
+ 1√|g|

δ(
√|g|S)

δgμν

]
δgμν

√|g| d4x

+
∫
E

δ

[
κ

2χ̄

(
δR

δḡμν
+ R√|ḡ|

δ
√|ḡ|
δḡμν

)

+ 1√|ḡ|
δ(

√|ḡ|S)

δḡμν
+ 1√|ḡ|

δ(
√|ḡ|S)

δḡμν

]
δḡμν

√|ḡ| d4x .

(81)

For any variation δgμν and δḡμν , we locally obtain:

1

2χ

(
δR

δgμν
+ R√|g|

δ
√|g|
δgμν

)

+ 1√|g|
δ(

√|g|S)

δgμν
+ 1√|g|

δ(
√|g|S)

δgμν
= 0, (82)

κ

2χ̄

(
δR

δḡμν
+ R√|ḡ|

δ
√|ḡ|
δḡμν

)
+ 1√|ḡ|

δ(
√|ḡ|S)

δḡμν

+ 1√|ḡ|
δ(

√|ḡ|S)

δḡμν
= 0. (83)

Let us then introduce the following tensors:

Tμν = − 2√|g|
δ(

√|g|S)

δgμν
= −2

δS

δgμν
+ gμνS, (84)

Tμν = − 2√|ḡ|
δ(

√|ḡ|S)

δḡμν
= −2

δS

δḡμν
+ ḡμνS, (85)

Tμν = − 2√|ḡ|
δ(

√|g|S)

δgμν
, (86)

T μν = − 2√|g|
δ(

√|ḡ|S)

δḡμν
. (87)

We obtain then from Eqs. (86) and (87):
√

|ḡ|
|g|Tμν =

√
|ḡ|
|g|

−2√|ḡ|
δ(

√|g|S)

δgμν

= −2√|g|
δ(

√|g|S)

δgμν
= −2

δS
δgμν

+ gμνS, (88)

√
|g|
|ḡ|T μν =

√
|g|
|ḡ|

−2√|g|
δ(

√|ḡ|S)

δḡμν

= −2√|ḡ|
δ(

√|ḡ|S)

δḡμν
= −2

δS
δḡμν

+ ḡμνS. (89)

Introduced into Eqs. (82) and (83), we can thus deduce the
coupled field equations describing the system of the two enti-
ties. To obtain the desired interaction laws under the New-
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tonian approximation, we must choose κ = −1. The system
of equations then becomes:

Rμν − 1

2
gμνR = χ

(
Tμν +

√
|ḡ|
|g|Tμν

)
, (90)

Rμν − 1

2
ḡμνR = κχ̄

(
Tμν +

√
|g|
|ḡ|T μν

)
. (91)

The tensor Tμν is the energy-momentum tensor, which
represents the source of the field acting on positive mass

entities and positive-energy photons. The term
√ |ḡ|

|g| is the
source of this field attributed to the action of negative masses
on these positive masses. The tensor Tμν is the energy-
momentum tensor, which represents the source of the field
acting on negative mass entities and negative-energy pho-

tons, and the term
√ |g|

|ḡ| is the source of this field attributed to

the action of positive masses on these negative masses. Tμν

and T μν are the interaction tensors of the system of the two
entities corresponding to the “induced geometry”, meaning
how each matter distribution on one layer of the universe
contributes to the geometry of the other.22

General relativity produces only a limited number of exact
solutions. We will follow the same logic.

Having established the foundation of the Janus cosmolog-
ical model, with its bimetric structure and the correspond-
ing field equations, we turn to constructing explicit solutions
under the assumption of homogeneity and isotropy. By con-
sidering the FLRW form for both metrics, we aim to derive
a time-dependent solution that accounts for the interaction
between positive and negative mass populations. The next
section will focus on obtaining these solutions, exploring
their compatibility with observational data, and providing a
theoretical framework for the accelerated cosmic expansion.

10 Construction of a time-dependent, homogeneous and
isotropic solution

Given the symmetry assumptions, the metrics then have the
FLRW form. The variable x0 is the common chronological
coordinate (time marker).

gμν = dx02 − a2
[

du2

1 − ku2 + u2dθ2 + u2 sin2 θdϕ2
]

,

(92a)

gμν = dx02 − ā2
[

du2

1 − k̄u2
+ u2dθ2 + u2 sin2 θdϕ2

]
.

(92b)

22 Interaction between populations of positive and negative masses.

Fig. 10 Comparison of observed and theoretical magnitudes as a func-
tion of z redshift [4]

The determinants of the two metrics are

g = −a6 sin2 θ, ḡ = −ā6 sin2 θ. (93)

As shown in reference [16] the treatment of the two equations
leads to the compatibility relation:

ρc2a3 + ρ̄c̄2ā3 = E = cst. (94)

This translates into conservation of energy, extended to both
populations. The exact solution, referring to two dust uni-
verses, corresponds to:

k = k̄ = −1 (95)

and:

a2 d2a

dx02 = −4πG

c2 E, (96a)

ā2 d2ā

dx02 = +4πG

c̄2 E . (96b)

A theoretical model loses interest if it cannot be com-
pared with observational data. The evolution of the positive
species will correspond to an acceleration if the energy E of
the system is negative. This provides a physical interpretation
of the acceleration of the cosmic expansion [12,17], which
then follows from the fact that the energy content is predomi-
nantly negative. Numerical data have been successfully com-
pared with observational data [4]. The corresponding curve
is shown in Fig. 10.
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To complete the model, we now need to provide exact
stationary solutions. We will restrict ourselves to so(3) sym-
metry.

We now focus our attention on the interaction laws and
their observational consequences. These interaction laws,
derived from the coupled field equations of the Janus model,
govern how positive and negative mass entities influence
each other. The next section explores these laws in detail and
examines how they provide explanations for various cosmo-
logical phenomena, including the formation of large-scale
structures and the resolution of issues related to dark matter
and dark energy.

11 Interaction laws and observational consequences

In the system of coupled field equations (??) and (??), the
terms on the left-hand side involve the Ricci tensors Rμν

and Rμν and the corresponding Ricci scalars R and R. These
terms are calculated from the two metrics gμν and ḡμν . Using
these two metrics, we then calculate the form of two operators
known as covariant derivatives ∇μ and ∇μ. It turns out that,
due to their form, the two left-hand sides of both equations
identically satisfy the following relation:

∇μ

(
Rμν − 1

2
Rgμν

)
= 0, (97)

∇μ

(
Rμν − 1

2
Rḡμν

)
= 0. (98)

The corresponding covariant derivatives of the two second
members must therefore also be zero, which corresponds to
the Bianchi identities, implying:

∇μTμν = 0, (99)

∇μTμν = 0. (100)

We should also have:

∇μ

[√
ḡ

g
Tμν

]
= 0, (101)

∇μ

[√
g

ḡ
T μν

]
= 0. (102)

In stationary conditions, the square roots of the ratios of the
determinants behave like constants, reflecting an “apparent
mass effect”. Conditions (101) and (102) can therefore be
replaced by:

∇μTμν = 0, (103)

and

∇μT μν = 0. (104)

Let’s write the system of equations in mixed notation,
replacing the square roots, which have become constant, by
the positive constants b2 and b̄2:

Rν
μ − 1

2
Rgν

μ = χ
[
T ν

μ + b2T ν
μ

]
, (105a)

R
ν

μ − 1

2
Rḡν

μ = −χ
[
T

ν

μ + b̄2T ν

μ

]
. (105b)

Using the Newtonian approximation, in both populations the
non-zero tensor terms reduce to:

T 0
0 = ρc2 > 0 T 0

0 = ρ̄c̄2 < 0

T
0
0 = ρ̄c̄2 < 0 T 0

0 = ρc2 > 0. (106)

In our system of coupled field equations, the presence of
a minus sign in front of the second member of the second
equation gives the following interaction laws:

• Masses of the same sign attract each other;
• Masses of opposite signs repel each other.

We have thus eliminated the runaway effect.
The first conclusion to be drawn is that where one of the

two types of mass is present, the other is absent, as immedi-
ately confirmed by simulations [14]. This is the case in the
vicinity of the Sun, and under these conditions the first equa-
tion is identified with Einstein’s 1915 equation. The model is
therefore in line with all the classical local observational data
of general relativity: Mercury’s perihelion advance, deflec-
tion of light rays by the Sun. The model therefore does not
invalidate that of general relativity, but presents itself as its
extension, made essential to integrate the new observational
data, which can no longer be managed by introducing the
hypothetical components of dark matter and dark energy.

We have seen, in our construction of the unsteady solution,
that negative energy dominates. The model is thus profoundly
asymmetrical. The negative mass component is proposed as
a substitute for the combined roles traditionally attributed
to dark matter and dark energy. By the way, going back to
the original idea, inspired by the work of Andreï Sakharov,
this allows us to attribute a well-defined identity to these
components. They are invisible, insofar as negative masses
emit photons of negative energy that our optical instruments
cannot capture. They are therefore simply copies of our own
antimatter, assigned a negative mass. We then have a new
distribution of contents (see Fig. 11).

At the moment of decoupling, when the gravitational
instability can play its role (we must then speak of joint grav-
itational instabilities), the characteristic Jeans time is shorter
for negative masses:

t̄J = 1√
4πG|ρ̄| 
 tJ = 1√

4πGρ
. (107)
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Fig. 11 Comparative contents of the ΛCDM and Janus models

The result will be a regular distribution of negative-mass
conglomerates of spheroidal antihydrogen and negative-
mass antihelium. These will behave like immense negative-
mass protostars. As soon as their temperature causes hydro-
gen reionization, their contraction will cease. These forma-
tions will then radiate in the red and infrared wavelengths.
But their cooling time is then large compared to the age of
the universe, which means that these objects will no longer
evolve. The history of this universe fold associated with neg-
ative masses is totally different from our universe fold of
ordinary matter. It will not give rise to stars, galaxies or plan-
ets. It will contain no atoms heavier than negative-mass anti-
helium. And there will be no life. And, as we will see later:
these negative formations are deliberately situated within the
Newtonian approximation.

But there is another very important point. When these
spheroidal conglomerates form, they confine the positive
mass to the residual space, giving it a lacunar structure, com-
parable to joined soap bubbles. The positive mass is thus dis-
tributed in the form of thin plates, sandwiched between two
negative conglomerates that exert a strong back pressure on
it. The positive mass is thus violently compressed and heated.
However, due to its plate-like arrangement, it can cool down
very quickly through the emission of radiation (see Fig. 12).

The result is a pattern of first-generation star and galaxy
formation totally different from the standard one. This con-
figuration had been the subject of simulations [14] since the
first, heuristic, approach to the model, and the fact that objects
all form within the first hundred million years was one of its
predictions, largely confirmed by JWST data.

The lacunar structure, advocated as early as 1995 [14],
predicted the existence of large voids, which the discover-
ies of the dipole repeller and other similar large voids have
also confirmed. Once this lacunar structure has been formed,
matter tends to concentrate along the segments common to

three gaps, forming filaments (see Fig. 13 on the next page).
The nodes of this distribution will only develop into galaxy
clusters.

After establishing the interaction laws and exploring their
observational consequences, it is essential to verify the math-
ematical and physical consistency of the Janus model. This
requires demonstrating that the system of coupled field equa-
tions respects the Bianchi identities and provides consistent
solutions in the weak field limit. In the following section, we
will examine the necessary conditions to ensure this consis-
tency, particularly in regions dominated by ordinary matter,
such as near the Sun, as well as in regions dominated by
negative masses, such as near the dipole repeller.

12 The mathematical and physical consistency of the
model

This is ensured in an isotropic, homogeneous and unsteady
situation, the required condition being the generalized con-
servation of energy expressed by Eq. (94). We now turn to
the case of stationary solutions, limiting ourselves to those
that satisfy so(3) symmetry. Bianchi identities must then be
satisfied, i.e. relations (99), (100), (103) and (104).

First, we will show the existence of asymptotic con-
sistency in Newtonian approximation situations. The key
aspects of this approximation are as follows:

• Velocities must be negligible compared to the speed of
light. This is the case for velocities 〈v〉 and 〈v̄〉 of ther-
mal agitation in both media, which are involved in the
definition of pressures. After decoupling:

εp = ερ〈v〉
3

and ε p̄ = ερ̄〈v̄〉
3

. (108)
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Fig. 12 Early rapid star and galaxy formation

Fig. 13 Structure of positive
mass in contiguous bubbles

• Curvature effects must be neglected, meaning that the
radial coordinate must be much larger than the charac-
teristic length scale associated with curvature, i.e., the
Schwarzschild radius.

12.1 Newtonian approximation of the field generated by a
positive mass M

Let’s introduce the Schwarzschild radius RS as follows:

εRS = ε
2GM

c2 , (109)

where ε being a small parameter. so(3) symmetry imposes
the shapes of the two metrics:

ds2 = eνdx02 − eλdr2 − r2dθ2 − r2 sin2 θdϕ2, (110a)

ds̄2 = eν̄dx02 − eλ̄dr2 − r2dθ2 − r2 sin2 θdϕ2. (110b)

The construction of a stationary solution then requires to
calculate the functions:

ν(r), λ(r), ν̄(r), and λ̄(r). (111)

To locate this solution, we need to consider the shapes of the
field source tensors:

T ν
μ , T ν

μ , T
ν

μ, and T ν

μ. (112)

Let’s start by considering a situation where only positive
mass is present. The tensors T ν

μ and T
ν

μ are then null and
the two field equations (??) and (??) become in mixed-mode
form:

Rν
μ − 1

2
gν
μR = χT ν

μ , (113)

R
ν

μ − 1

2
ḡν
μR = −χ̄

√
|g|
|ḡ|T

ν

μ. (114)

The form of the tensor T ν
μ in its classical mixed-mode form

is given by23:

T ν
μ =

⎛
⎜⎜⎝

ρc2 0 0 0
0 −εp 0 0
0 0 −εp 0
0 0 0 −εp

⎞
⎟⎟⎠ . (115)

23 (13.1) p.425 of [1].
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As we are in the Newtonian approximation, ε is very small.
With the introduction of the metric (110a) and the tensor
(115) in the first field equation, we are led to introduce the
function m(r) such that:

e−λ = 1 − 2m(r)

r
⇒ 2m(r) = r

(
1 − e−λ

)
. (116)

Similarly to equation (14.18) from [1], the classic calcu-
lation leads to the relationship:

m(r) = Gρ

c2

∫ r

0
4πr2dr = 4

3
πr3ρ

G

c2 . (117)

We then obtain the classical Tolman–Oppenheimer–Volkoff
(TOV) equation [11]. Relation (117) places the small quan-
tity in front of any quantity that will be neglected in the
Newtonian approximation:

1

c2

dp

dr
= −m + 4πεGpr3

c4

r(r − 2mε)

(
ρ + ε

p

c2

)
. (118)

When ε tends to zero (or c tends to infinity) we get:

dp

dr
= −ρmc2

r2 = −Gρ

r2

4πr3ρ

3
. (119)

The quantity 4πr3ρ
3 represents the amount of matter μ(r)

contained inside a sphere of radius r . We know that the force
of gravity exerted inside a mass of constant density is equiv-
alent to that exerted by the mass located at the center of the
sphere, and that the mass located outside this sphere gives a
force of zero. So the quantity −Gρμ(r)

r2 is the force of gravity,
per unit volume, acting on the matter contained in an ele-
mentary volume around a point at distance r from the center.
Thus the relation (115), which follows from the Newtonian
approximation, expresses that the force of gravity balances
the force of pressure. This is the classic Euler relationship.

Hence, the Schwarzschild interior metric built is given by:

ds2 =
⎡
⎣3

2

√(
1 − rn2

r̂2

)
− 1

2

√(
1 − r2

r̂2

)⎤
⎦

2

dx02 − dr2

1 − r2

r̂2

−r2
(

dθ2 + sin2 θdφ2
)

. (120)

This metric connects with the Schwarzschild exterior metric:

ds2 =
(

1 − 2GM

c2r

)
c2dx02 − dr2

1 − 2GM
c2r

− r2

(
dθ2 + sin2 θdφ2

)
, (121)

where rn is the radius of the star and r̂ is a stellar constant as a
function of its densityρ. It is the characteristic radius of a neu-
tron star, defined under the assumption of constant density ρ.
It establishes a critical threshold for the star’s radius, beyond
which the internal pressure becomes infinite at the center,
indicating a physical singularity or instability. This radius is
derived from the balance between gravitational forces and

the internal pressure gradients within the star [10]. It is given
by:

r̂ =
√

3c2

8πGρ
. (122)

We can thus deduce, according to the classical theory of gen-
eral relativity, that a particle of ordinary matter will undergo
an attractive gravitational field due to the effect of a distribu-
tion of positive masses.

To ensure the mathematical consistency of the system of
two field equations (113) and (114), we therefore need to
consider a form of the tensor T ν

μ that gives back this same
Euler relation when the Newtonian approximation is also
applied to this solution. This is guaranteed with the form of
the interaction tensor T ν

μ of the field equation (114) as this
choice can stem from a Lagrangian derivation:

T ν

μ =

⎛
⎜⎜⎝

ρc2 0 0 0
0 +εp 0 0
0 0 +εp 0
0 0 0 +εp

⎞
⎟⎟⎠ . (123)

On the right-hand side of the second field equation (114),
the ratio of determinants will be considered almost unity
insofar as we perform this calculation within the Newtonian
approximation.

Then, if we consider that:

√
|g|
|ḡ| =

√
eνeλr4 sin2 θ

eν̄eλ̄r4 sin2 θ
≈ 1, (124)

the calculation leads to the Tolman–Oppenheimer–Volkoff
(TOV) solution for the population of negative masses man-
aged by the second field equation:

1

c2

dp

dr
= −m − 4πεGpr3

c4

r(r + 2mε)

(
ρ − ε

p

c2

)
. (125)

The two solutions, (118) and (125), asymptotically approach
the Euler equation in the Newtonian approximation as ε tends
to zero. This also corresponds to the asymptotic satisfaction
of the Bianchi identities in the same context24.

Consequently, it is possible to build the Schwarzschild
interior metric associated with the population of negative
masses by applying the same calculation scheme as for the
population of positive masses, thus constituting the solution

24 The inequality r � 2m (where m is often replaced by GM
c2 to obtain

a dimension of length, M being the mass of the object and G the gravi-
tational constant) indicates that we are sufficiently far from the gravita-
tional source for the effects of general relativity to be negligible. Indeed,
at great distances, the length 2GM

c2 is completely negligible.
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to the second field equation (114) as follows:

d̄s
2 =

⎡
⎣3

2

√(
1 + rn2

r̂2

)
− 1

2

√(
1 + r2

r̂2

)⎤
⎦

2

dx02

− dr2

1 + r2

r̂2

− r2
(

dθ2 + sin2 θdφ2
)

. (126)

This metric must join the Schwarzschild exterior metric:

d̄s
2 =

(
1 + 2GM

c2r

)
c2dx02 − dr2

1 + 2GM
c2r

− r2

×
(

dθ2 + sin2 θdφ2
)

. (127)

We can deduce that a particle with negative mass will undergo
a repulsive gravitational field due to the effect of a distribution
of positive masses.

The Janus model presents a new paradigm, extending
general relativity by describing the universe as a four-
dimensional manifold M4, endowed with two distinct met-
rics. These metrics are solutions to the system of coupled
field equations (??) and (??).

Let’s now consider the case, still in the Newtonian approx-
imation, where the geometry is determined by the presence
of negative mass, corresponding to regions of space domi-
nated by negative masses, such as near the dipole repeller
[8].

12.2 Newtonian approximation of the field generated by a
negative mass M̄

In regions where negative masses dominate, the system
becomes in mixed-mode form:

Rν
μ − 1

2
gν
μR = χ

√
|ḡ|
|g|T

ν
μ , (128)

R
ν

μ − 1

2
ḡν
μR = −χ̄T

ν

μ. (129)

If we consider the impact of the presence of negative masses
on the geometry of spacetime structured by the metric tensor
of the first field equation (128) associated with the popu-
lation of positive masses, we can define the corresponding
interaction tensor (130) as follows:

T ν
μ =

⎛
⎜⎜⎝

ρ̄c̄2 0 0 0
0 − p̄ 0 0
0 0 − p̄ 0
0 0 0 − p̄

⎞
⎟⎟⎠ . (130)

Thus, the impact of the pressure gradient of negative masses
on the geodesics followed by ordinary matter and positive-
energy photons according to the field equation (128) trans-

lates into the following Tolman–Oppenheimer–Volkoff equa-
tion:

p̄′

c̄2 = −m − 4πG p̄r3

c̄4

r(r + 2m)

(
ρ̄ − p̄

c̄2

)
. (131)

Therefore, it is possible to build the Schwarzschild interior
metric solution in this manner:

ds2 =
⎡
⎣3

2

√(
1 + rn2

r̂2

)
− 1

2

√(
1 + r2

r̂2

)⎤
⎦

2

dx02

− dr2

1 + r2

r̂2

− r2
(

dθ2 + sin2 θdφ2
)

. (132)

This metric can be connected to the Schwarzschild exterior
metric:

ds2 =
(

1 + 2GM

c2r

)
c2dx02 − dr2

1 + 2GM
c2r

−r2
(

dθ2 + sin2 θdφ2
)

. (133)

We can deduce that a particle of ordinary matter will undergo
a repulsive gravitational field due to the effect of a distribution
of negative masses.

Then, when the source of the gravitational field of the
second field equation (129) is created by a negative mass, we
can freely define the following energy-momentum tensor as
follows:

T
ν

μ =

⎛
⎜⎜⎝

ρ̄c̄2 0 0 0
0 p̄ 0 0
0 0 p̄ 0
0 0 0 p̄

⎞
⎟⎟⎠ . (134)

We can therefore deduce the following Tolman–Oppenheimer–
Volkoff equation:

p̄′

c̄2 = −m + 4πG p̄r3

c̄4

r(r − 2m)

(
ρ̄ + p̄

c̄2

)
. (135)

Hence, the interior Schwarzschild metric can be constructed
as follows:

d̄s
2 =

⎡
⎣3

2

√(
1 − r̄n2

r̂2

)
− 1

2

√(
1 − r2

r̂2

)⎤
⎦

2

dx02

− dr2

1 − r2

r̂2

− r2
(

dθ2 + sin2 θdφ2
)

. (136)

This metric matches the exterior Schwarzschild metric:

d̄s
2 =

(
1 − 2GM̄

c̄2r

)
c̄2dx02 − dr2

1 − 2GM̄
c̄2r

−r2
(

dθ2 + sin2 θdφ2
)

. (137)
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We can deduce that a particle of negative mass will undergo
an attractive gravitational field due to the effect of a distribu-
tion of negative masses.

Both solutions (131) and (135) reduces to the Euler equa-

tion approximately equal to −GM̄(r)ρ̄(r)
r2 in the Newtonian

limit, reflecting hydrostatic equilibrium.25

The form of these two source tensors satisfies the Bianchi
identities. This would obviously not be the case if the negative
mass were to fall outside of this framework. For that, there
would need to exist neutron stars of negative mass. How-
ever, the characteristic time of evolution of conglomerates of
negative mass, their “cooling time”, exceeds the age of the
universe. These spheroidal conglomerates cannot evolve, so
the content of this negative spacetime will be limited to a mix-
ture of negative mass anti-hydrogen and anti-helium. Since
nucleosynthesis cannot occur, there can be no anti-galaxies
or anti-stars, regardless of their mass. Consequently, there
cannot exist anti-neutron stars.

Moreover, in the case where this negative spacetime would
generate hyperdense stars through an as-yet-unknown mech-
anism, it would then be necessary to reconsider the form
of these tensors. However, the current configuration satisfies
all currently available and potentially available observational
data.

After verifying the mathematical and physical consistency
of the Janus model, we now turn to its predictive capabilities.
One of the most striking predictions concerns the existence
of large voids and structures such as the dipole repeller. The
Janus model not only accounts for these features but also
offers novel predictions regarding the effect of negative grav-
itational lensing on the magnitudes of background sources.
In the following short section, we explore the observational
signatures of this phenomenon, with a particular focus on the
implications for the dipole repeller.

13 Dipole repeller prediction

The Janus model is essentially falsifiable in Popper’s sense. It
predicted a large-scale twin structure with large voids. This
has been confirmed [8]. It predicted a very early birth of
first-generation stars and galaxies. A new prediction this time
concerns the magnitude of sources located in the background
of the large void. According to the model, the magnitude of
the light emitted by these distant sources will be attenuated
by the negative gravitational lensing effect. This is a novel
aspect, since it has been assumed that the two entities, posi-
tive and negative, interact only through antigravitation. Pho-
tons from these distant sources can then freely pass through

25 Where the pressure at the center of this negative mass spheroid is
balanced by the negative gravitational force depending on density and
mass.

Fig. 14 Attenuation of the magnitude of objects in the background of
the dipole repeller

the negative-mass conglomerates. This means that both exter-
nal and internal geodesics must be used. The deflection effect
of light rays will be greatest when they graze the surface of
the object, with radius r̄0. This effect weakens as you move
deeper into the object, becoming zero when the photons pass
through its center (see Fig. 8). Eventually, we will be able
to map the magnitudes of objects in the background of the
dipole repeller. Schematically, their luminosity will be atten-
uated in a ring-shaped pattern (see Fig. 14). This measure-
ment will immediately give us the value of the radius r̄0 of
this formation.

After exploring the implications of the Janus model in
the Newtonian approximation and its predictions for large-
scale structures, such as the dipole repeller, we now move
beyond these limitations. In a universe dominated by positive
masses, certain astrophysical objects, such as neutron stars
and supermassive black holes, exhibit strong gravitational
effects that require a relativistic treatment. The following
section addresses the challenges of extending the model to
these extreme cases.

14 Beyond the Newtonian approximation

These objects are absent in the universe fold associated with
negative masses. In our universe fold of ordinary matter,
objects that deviate from the Newtonian approximation are
neutron stars and hypermassive objects located at the cen-
ter of galaxies, which early images show to be the seat of
a strong gravitational redshift effect, darkening their central
part. These objects are a priori manageable using the classic
pair of outer and inner metrics, taking rotation into account.
It should be remembered that we are under no obligation to
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provide the form of the source tensor of the other sector, in
this case an interaction tensor, whose form would be precisely
imposed by the Bianchi identities. It is conceivable that one
day someone will provide the exact form of this tensor.

But even in the absence of such an object, there is no a
priori inconsistency.

15 Conclusion

The genesis of the Janus model spanned several decades. The
starting point, in 1967, was Andreï Sakharov’s attempt to pro-
vide an initial explanation for the absence of observations of
primordial antimatter, which remains a significant flaw in
the Standard Model ΛCDM. This model offers no explana-
tion for the loss of half of the universe’s content. Sakharov
therefore proposed a universe structure with two sectors, the
second being T-symmetrical to our own. A few years later, in
1970, through the application of symplectic geometry, math-
ematician Jean-Marie Souriau demonstrated that this inver-
sion of the time coordinate, i.e., T-symmetry, is synonymous
with the inversion of energy and mass. Pushing this idea of
global symmetry further, Sakharov envisioned a twin uni-
verse that is CPT-symmetrical to ours. In this scenario, the
invisible components of the universe reduce to negative-mass
antimatter.

In 1994, we proposed that this universe structure corre-
sponds to a two-fold cover of a projective P

4, by a com-
pact universe with the topology of a S4 sphere. The two sin-
gularities of this spherical universe, the Big Bang and the
Big Crunch, then coincide. By introducing a tubular struc-
ture, these singularities disappear. This configuration con-
sists of two PT-symmetrical folds. These adjacent sectors
are assumed to interact solely through gravity. Therefore, the
interaction between positive masses in one sector and nega-
tive masses in the other sector must be taken into account.

However, the introduction of negative masses is not fea-
sible within the framework of general relativity, as it would
result in interaction laws that are incompatible with known
physical principles. Thus, a bimetric model is proposed. A
system of coupled field equations is then constructed from
an action, whose form eliminates the problematic runaway
effect. The interaction laws in the model dictate that masses
of the same sign attract each other according to Newton’s law,
while masses of opposite signs repel each other following an
anti-Newtonian law. Since these masses are mutually exclu-
sive, the negative mass can be neglected in the vicinity of the
Sun, and the first field equation then aligns with Einstein’s
equation.

In this way, the model remains consistent with local rela-
tivistic observations, such as the advance of Mercury’s per-
ihelion and the deflection of light by the Sun. Therefore,
the Janus model can be considered an extension of general

relativity. An exact, time-dependent solution is constructed,
revealing a generalized energy conservation law that applies
to both sectors. When adapting the model to observations, it
becomes evident that an accelerating expansion is present,
imposing a fundamental dissymmetry between the two enti-
ties involved.

In this framework, the vast majority of negative mass
replaces the hypothetical components of dark matter and dark
energy. As a result, the matter distribution is approximately
5% visible matter and 95% negative mass, which is invisi-
ble because it emits photons of negative energy that elude
detection by our observation instruments. This dissymme-
try implies that, following decoupling, the negative masses
form a regular network of spheroidal conglomerates, while
the positive mass, confined to the remaining space, adopts a
patchy distribution.

The model also accounts for the existence of large voids,
with the dipole repeller being the first identified among them.
At the centers of these large voids are invisible spheroidal
conglomerates that behave like giant protostars, with cool-
ing times exceeding the age of the universe. These objects,
which emit negative-energy photons corresponding to light
in the red and infrared regions, do not evolve and do not give
rise to stars, galaxies, or atoms heavier than helium. Life,
therefore, is absent from this negative sector, which consists
of a mixture of negative-mass antihydrogen and antihelium.

Furthermore, the model explains the very early forma-
tion of first-generation stars and galaxies, as recently demon-
strated by the James Webb Space Telescope. We then exam-
ine the issue of the model’s mathematical consistency, specif-
ically whether the Bianchi identities are satisfied. We show
that they can be asymptotically satisfied under conditions
corresponding to the Newtonian approximation.

Lastly, we address the question of objects that do not fit
within this approximation, primarily located on the positive-
mass side. We assert that we are not required to provide the
exact form of the interaction tensor in such cases, as it is
determined by the zero-divergence condition. The lack of
definition of this tensor does not invalidate the consistency
of a non-linear solution.
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