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Foreword	:		

Written	 more	 than	 a	 century	 ago	 by	 the	 mathematician	 David	 Hilbert,	 this	 article	
represents	 an	 essential	 element	 for	 those	who	want	 to	 understand	 the	 genesis	 of	 the	
theory	of	general	relativity	as	well	as	the	interpretation	he	gives	of	the	exact	solutions	
published	by	Karl	Schwarschild	eleven	months	earlier.	It	also	sheds	light	on	the	author's	
conception	 of	 the	 geometry	 of	 space-time,	 considered	 as	 an	 extension	 of	 a	 three-
dimensional	physical	space	by	means	of	a	pure	imaginary	time.	This	article	is	one	of	the	
chapters	of	a	book	published	in	2007	in	Boston	Studies	in	the	Philosophy	of	Science,	vol	
250.	

This	 book	 is	 offered	 for	 sale	 as	 an	 e-book	 for	€	 630.23	 and	 as	 a	 harcover	 book	 for	€	
788.77.	It	contains	this	article	in	the	form	of	a	chapter,	which	can	then	be	acquired	for	
29.94.		

	

This	translation	contains	several	important	errors	that	we	will	point	out.		

On	the	basis	of	the	bilinear	form	(28),	page	1017,	Hilbert	introduces	on	page	1018	two	
different	 real	 lengths	 λ	 and	 τ,	 according	 to	 the	 sign	 of	 this	 bilinear	 form,	 the	 second	
being	 the	 proper	 time	 τ.	 On	 page	 1022	 he	 introduces	 which	 he	 calls	 the	 Gaussian	
coordinate	system,	now	well	known	to	all	theorists	and	geometers.	In	the	translation	one	
can	read:	(33)																																								  

g11 = 0 g22 = 0 g33 = 0 g44 = 0 		

which	is	obviously	a	big	mistake.	It	should	read:		

(33)																																								  
g11 = 0 g22 = 0 g33 = 0 g44 = 1 		

	
Page	1027	endows	what	he	calls	pseudo	geometry	with	four	coordinates,	the	fourth,	the	
time	coordinate,	being	imaginary:		

  
w1 = x1 w2 = x2 w3 = x3 w4 = i x4 	

On	 page	 1029	 he	 takes	 up	 the	 stationary	 solutions,	 invariant	 by	 the	 action	 of	 SO(3),	
constructed	by	Einstein	in	Schwarzschild.	He	specifies	his	hypotheses,	we	quote	him		;		

																																																								
1	jean-pierre.petit@manaty.net	



The	assumptions	about	the	 
gµν 	are	the	following	:		

1	–	The	metric	is	represented	in	a	Gaussian	coordinate	system,	except	that	
x4	is	left	artbitrary.	i.e.	we	have		

 
g14 = 0 g24 = 0 g34 = 0 	

	

2	–	The	 
gµν 	are	independent	of	the	time	coordinate	x4.		

3	 –	 The	  
gµν 	are	 centrally	 symmetric	 with	 respect	 to	 the	 origin	 of	

coordinates.		

					According	 to	 Schwarzschild	 the	 most	 general	 metric	 conforming	 to	
these	assumptions	is		represented	in	polar	coordinates,	where		

  

w1 = r cosϑ

w2 = r sinϑ cosϕ

w3 = r sinϑ sinϕ

w4 = l

	

All	calculations	done	the	line	element	is	presented	on	page	1033.	We	quote:		

Then,	 for	 l	=	 it	 	(43)	result	 in	the	desired	metric	 in	the	form	first	 found	by	
Schwarzschild		

  
G ( dr ,dϑ , dϕ , dl ) = r

r − α
dr 2 + r 2dϑ2 + r 2sin2ϑ dϕ2 − r − α

r
dl2 	

Second	error.	It	should	read:		

  
G ( dr ,dϑ , dϕ , dl ) = r

r − α
dr 2 + r 2dϑ2 + r 2sin2ϑ dϕ2 − r − α

r
dt2 	
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In my first communication

 

1

 

 I proposed a system of basic equations of physics. Before
turning to the theory of integrating these equations it seems necessary to discuss
some more general questions of a logical as well as physical nature.

First we introduce in place of the world parameters  the most
general 

 

real

 

 spacetime coordinates  by putting

and correspondingly in place of

we write simply

The new —the gravitational potentials of Einstein—shall then
all be real functions of the real variables  of such a type that, in the
representation of the quadratic form

(28)

as a sum of four squares of linear forms of the  three squares always occur with
positive sign, and one square with negative | sign: thus the quadratic form (28) pro-
vides our four dimensional world of the  with the metric of a pseudo-geometry.
The determinant  of the  turns out to be negative.

 

1 This journal, 20 November 1915.
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If a curve

is given in this geometry, where  mean some arbitrary real functions of the
parameter  then it can be divided into pieces of curves on each of which the
expression

does not change sign: A piece of the curve for which

shall be called a 

 

segment

 

 and the integral along this piece of curve

shall be the 

 

length of the segment

 

; a piece of the curve for which

will be called a 

 

time line

 

, and the integral

evaluated along this piece of curve shall be the 

 

proper time of the time line

 

; finally a
piece of curve along which

shall be called a 

 

null line

 

.
To visualize these concepts of our pseudo geometry we imagine two ideal mea-

suring devices: the 

 

measuring thread

 

 by means of which we are able to measure the
length  of any segment, and secondly the 

 

light clock

 

 with which we can determine
the proper time of any time line. The thread shows zero and the light clock stops
along every null line, whereas the former fails totally along a time line, and the latter
along a segment. |

First we show that each of the two instruments suffices to compute with its aid the
values of the  as functions of  as soon as a definite spacetime coordinate sys-
tem  has been introduced. Indeed we choose any set of 10 segments, which all con-
verge on the same world point  from different directions, so that this endpoint

xs xs p( )                s 1 2 3 4, , ,=( )=

xs p( )
p,

G
x1d
pd--------

x2d
pd--------
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pd--------

x4d
pd--------, , ,( )
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assumes the same parameter value  on each. At this end point we have the equation,
for each of the 10 segments,

here the left-hand sides are known as soon as we have determined the lengths  by
means of the thread. We introduce the abbreviations

so that clearly

(29)

whereby also the condition on the directions of the chosen 10 segments at the point

is seen to be necessary.
When  has been calculated according to (29), the use of this procedure for any

11th segment ending at  would yield the equation

and this equation would then both verify the correctness of the instrument and con-
firm experimentally that the postulates of the theory apply to the real world.

Corresponding reasoning applies to the light clock. |
The axiomatic construction of our pseudo-geometry could be carried out without

difficulty: first an axiom should be established from which it follows that length resp.
proper time must be integrals whose integrand is only a function of the  and their
first derivatives with respect to the parameter; suitable for such an axiom would be
the property of development of the thread or the well-known envelope theorem for
geodesic lines. Secondly an axiom is needed whereby the theorems of the pseudo-
Euclidean geometry, that is the old principle of relativity, shall be valid in infinitesi-

p
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mal regions; for this the axiom put down by W. Blaschke2 would be particularly suit-
able, which states that the condition of orthogonality for any two directions—
segments or time lines—shall always be a symmetric relation.

Let us briefly summarize the main facts that the Monge-Hamilton theory of differ-
ential equations teaches us for our pseudo-geometry.

With every world point  there is associated a cone of second order, with vertex
at  and determined in the running point coordinates  by the equation

this shall be called the null cone belonging to the point  The totality of null cones
form a four dimensional field of cones, which is associated on the one hand with
“Monge’s” differential equation

and on the other hand with “Hamilton’s” partial differential equation

(30)

where  denotes the quadratic form

reciprocal to  The characteristics of Monge’s and at the same time those of Hamil-
ton’s partial differential equation (30) are the geodesic null lines. All the geodesic
null lines originating at one particular world point  generate a three
dimensional point manifold, which | shall be called the time divide belonging to the
world point  This divide has a node at  whose tangent cone is precisely the null
cone belonging to  If we transform the equation of the time divide into the form

then

is an integral of Hamilton’s differential equation (30). All the time lines originating at
the point  remain totally in the interior of that four dimensional part of the world
whose boundary is the time divide of 

After these preparations we turn to the problem of causality in the new physics.

2 “Räumliche Variationsprobleme mit symmetrischer Transversalitätsbedingung.” Leipziger Berichte,
Math.-phys. Kl. 68 (1916) p. 50.
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Up to now all coordinate systems  that result from any one by arbitrary trans-
formation have been regarded as equally valid. This arbitrariness must be restricted
when we want to realize the concept that two world points on the same time line can
be related as cause and effect, and that it should then no longer be possible to trans-
form such world points to be simultaneous. In declaring  as the true time coordi-
nate we adopt the following definition:

A true spacetime coordinate system is one for which the following four inequali-
ties hold, in addition to 

(31)

A transformation that transforms one such spacetime coordinate system into another
true spacetime coordinate system shall be called a true spacetime coordinate transfor-
mation.

The four inequalities mean that at any world point  the associated null cone
excludes the linear space

but contains in its interior the line

the latter line is therefore always a time line. |
Let any time line  be given; because

it follows that in a true spacetime coordinate system we must always have

and therefore that along a time line the true time coordinate  must always increase
resp. decrease. Because a time line remains a time line upon every coordinate trans-
formation, therefore two world points along one time line can never be given the
same value of the time coordinate  through a true spacetime transformation; that
is, they cannot be transformed to be simultaneous.

On the other hand, if the points of a curve can be truly transformed to be simulta-
neous, then after this transformation we have for this curve

xs,

x4

g 0:<

g11 0,>
g11 g12

g21 g22
0,>
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g21 g22 g23

g31 g32 g33

0,> g44 0.<

as

x4 a4,=

x1 a1,= x2 a2,= x3 a3;=

[58]xs xs p( )=

G
xsd
pd-------( ) 0<

x4d
pd-------- 0,≠

x4

x4

x4 const.,= that is
x4d
pd-------- 0,=



1022 DAVID HILBERT

therefore

and here the right side is positive because of the first three of our inequalities (31); the
curve therefore characterizes a segment.

So we see that the concepts of cause and effect, which underlie the principle of
causality, also do not lead to any inner contradictions whatever in the new physics, if
we only take the inequalities (31) always to be part of our basic equations, that is if
we confine ourselves to using true spacetime coordinates.

At this point let us take note of a special spacetime coordinate system that will
later be useful and which I will call the Gaussian coordinate system, because it is the
generalization of the system of geodesic polar coordinates introduced by Gauss in the
theory of surfaces. In our four-dimensional world let any three-dimensional space be
given so that every curve confined to that space is a segment: a space of segments, as
I would like to call it; | let  be any point coordinates of this space. We now
construct at every point  of this space the geodesic orthogonal to it, which
will be a time line, and on this line we mark off  as proper time; the point in the
four-dimensional world so obtained is given coordinate values  In these
coordinates we have, as is easily seen,

(32)

that is, the Gaussian coordinate system is characterized analytically by the equations

(33)

Because of the nature of the three dimensional space  we presupposed, the
quadratic form on the right-hand side of (32) in the variables  is necessar-
ily positive definite, so the first three of the inequalities (31) are satisfied, and since
this also applies to the fourth, the Gaussian coordinate system always turns out to be
a true spacetime coordinate system.

We now return to the investigation of the principle of causality in physics. As its
main contents we consider the fact, valid so far in every physical theory, that from a
knowledge of the physical quantities and their time derivatives in the present the
future values of these quantities can always be determined: without exception the
laws of physics to date have been expressed in a system of differential equations in
which the number of the functions occurring in them was essentially the same as the
number of independent differential equations; and thus the well-known general
Cauchy theorem on the existence of integrals of partial differential equations directly
offered the rationale of proof for the above fact.

Now, as I emphasized particularly in my first communication, the basic equations
of physics (4) and (5) established there are by no means of the type characterized

G
xsd
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above; rather, according to Theorem I, four of them are a consequence of the rest: we
regarded the four Maxwell equations (5) as a consequence of the ten gravitational
equations (4), and so we have for the 14 potentials   only 10 equations (4) that
are essentially independent of each other. |

As soon as we maintain the demand of general invariance for the basic equations
of physics the circumstance just mentioned is essential and even necessary. Because
if there were further invariant equations, independent of (4), for the 14 potentials,
then introduction of a Gaussian coordinate system would lead for the 10 physical
quantities as per (33),

to a system of equations that would again be mutually independent, and mutually
contradictory, because there are more than 10 of them.

Under such circumstances then, as occur in the new physics of general relativity,
it is by no means any longer possible from knowledge of physical quantities in
present and past to derive uniquely their future values. To show this intuitively on an
example, let our basic equations (4) and (5) of the first communication be integrated
in the special case corresponding to the presence of a single electron permanently at
rest, so that the 14 potentials

become definite functions of  all independent of the time  and in addi-
tion such that the first three components  of the four-current density vanish.
Then we apply the following coordinate transformation to these potentials:

For  the transformed potentials   are the same functions of
 as the   of the original variables  whereas the  

for  depend in an essential way also on the time coordinate  that is, the
potentials   represent an electron that is at rest until  but then puts
its components into motion. |

Nonetheless I believe that it is only necessary to formulate more sharply the idea
on which the principle of general relativity3 is based, in order to maintain the princi-
ple of causality also in the new physics. Namely, to follow the essence of the new rel-

gµν, qs
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ativity principle we must demand invariance not only for the general laws of physics,
but we must accord invariance to each separate statement in physics that is to have
physical meaning—in accordance with this, that in the final analysis it must be possi-
ble to establish each physical fact by thread or light clock, that is, instruments of

 

invariant

 

 character. In the theory of curves and surfaces, where a statement in a cho-
sen parametrization of the curve or surface has no geometrical meaning for the curve
or surface itself, if this statement does not remain invariant under any arbitrary trans-
formation of the parameters or cannot be brought to invariant form; so also in physics
we must characterize a statement that does not remain invariant under any arbitrary
transformation of the coordinate system as physically meaningless. For example, in
the case considered above of the electron at rest, the statement that, say at the time

 this electron is at rest, has no physical meaning because this statement is not
invariant.

Concerning the principle of causality, let the physical quantities and their time
derivatives be known at the present in some given coordinate system: then a state-
ment will only have physical meaning if it is invariant under all those transforma-
tions, for which the coordinates just used for the present remain unchanged; I
maintain that statements of this type for the future are all uniquely determined, that
is, the principle of causality holds in this form:

From present knowledge of the 14 physical potentials   all statements
about them for the future follow necessarily and uniquely provided they are physi-
cally meaningful.

To prove this proposition we use the Gaussian spacetime coordinate system.
Introducing (33) into the basic equations (4) of the first communication yields for the
10 potentials |

(34)

a system of as many partial differential equations; if we integrate these on the basis of
the given initial values at  we find uniquely the values of (34) for 
Since the Gaussian coordinate system itself is uniquely determined, therefore also all
statements about those potentials (34) with respect to these coordinates are of invari-
ant character.

The forms, in which physically meaningful, i.e. invariant, statements can be
expressed mathematically are of great variety.

First. This can be done by means of an invariant coordinate system. Like the
Gaussian system used above one can apply the well-known Riemannian one, as well
as that spacetime coordinate system in which electricity appears at rest with unit cur-
rent density. As at the end of the first communication, let  denote the function
occurring in Hamilton’s principle and depending on the invariant

3 In his original theory, now abandoned, A. Einstein (Sitzungsberichte der Akad. zu Berlin, 1914,
p. 1067) had indeed postulated certain 4 non-invariant equations for the  in order to save the cau-
sality principle in its old form.

gµν ,

x4 1=

gµν, qs
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x4 0,= x4 0.>
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then

is the four-current density of electricity; it represents a contravariant vector and there-
fore can certainly be transformed to  as is easily seen. If this is done, then
from the four equations

the four components of the four-potential  can be expressed in terms of the 
and every relation between the  in this or in one of the first two coordinate sys-
tems is then an invariant statement. For particular solutions of the basic equations
there may be special invariant coordinate systems; for example, in the case treated
below of the centrally symmetric gravitational field  form an invariant sys-
tem of coordinates up to rotations.

Second. The statement, according to which a coordinate system can be found in
which the 14 potentials   have certain definite values in the future, or fulfill
certain definite conditions, is always an invariant and therefore a physically meaning-
ful one. The mathematically invariant expression for | such a statement is obtained by
eliminating the coordinates from those relations. The case considered above, of the
electron at rest, provides an example: the essential and physically meaningful content
of the causality principle is here expressed by the statement that the electron which is
at rest for the time  will, for a suitably chosen spacetime coordinate system,
also remain at rest in all its parts for the future 

Third. A statement is also invariant and thus has physical meaning if it is sup-
posed to be valid in any arbitrary coordinate system. An example of this are Ein-
stein’s energy-momentum equations having divergence character. For, although
Einstein’s energy does not have the property of invariance, and the differential equa-
tions he put down for its components are by no means covariant as a system of equa-
tions, nevertheless the assertion contained in them, that they shall be satisfied in any
coordinate system, is an invariant demand and therefore it carries physical meaning.

According to my exposition, physics is a four-dimensional pseudo-geometry,
whose metric  is connected to the electromagnetic quantities, i.e. to the matter, by
the basic equations (4) and (5) of my first communication. With this understanding,
an old geometrical question becomes ripe for solution, namely whether and in what
sense Euclidean geometry—about which we know from mathematics only that it is a
logical structure free from contradictions—also possesses validity in the real world.

The old physics with the concept of absolute time took over the theorems of
Euclidean geometry and without question put them at the basis of every physical the-
ory. Gauss as well proceeded hardly differently: he constructed a hypothetical non-

q qkqlg
kl,

kl
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rs f q( )∂
qs∂

-------------=

0 0 0 1, , ,( ),

f q( )∂
qs∂

------------- 0=    s 1 2 3, ,=( ), f q( )∂
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qs gµν,
gµν
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gµν, qs

[63]
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Euclidean physics, by maintaining the absolute time and revoking only the parallel
axiom from the propositions of Euclidean geometry; a measurement of the angles of a
triangle of large dimensions showed him the invalidity of this non-Euclidean physics.

The new physics of Einstein’s principle of general relativity takes a totally differ-
ent position vis-à-vis geometry. It takes neither Euclid’s nor any other particular
geometry a priori as basic, in order to deduce from it the proper laws of physics, but,
as I showed in my first communication, | the new physics provides at one fell swoop
through one and the same Hamilton’s principle the geometrical and the physical laws,
namely the basic equations (4) and (5), which tell us how the metric —at the
same time the mathematical expression of the phenomenon of gravitation—is con-
nected with the values  of the electrodynamic potentials.

Euclidean geometry is an action-at-a-distance law foreign to the modern physics:
By revoking the Euclidean geometry as a general presupposition of physics, the the-
ory of relativity maintains instead that geometry and physics have identical character
and are based as one science on a common foundation.

The geometrical question mentioned above amounts to the investigation, whether
and under what conditions the four-dimensional Euclidean pseudo-geometry

(35)

is a solution, or even the only regular solution, of the basic physical equations.
The basic equations (4) of my first communication are, due to the assumption (20)

made there:

where

When the values (35) are substituted, we have

(36)

and for

we have

that is, when all electricity is removed, the pseudo-Euclidean geometry is possible.
The question whether it is also necessary in this case, i.e. whether—or under certain

[64]
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additional conditions—the values (35), and those values of the  resulting from
coordinate transformation of the latter, are the only regular solutions of the equations
(36) is a mathematical problem not to be discussed here in general. Instead I confine
myself | to presenting some thoughts concerning this problem in particular.

For this we return to the original world coordinates of my first communication

and give the corresponding meaning to the 
In the case of the pseudo-Euclidean geometry we have

where

For every metric in the neighborhood of this pseudo-Euclidean geometry the ansatz

(37)

is valid, where  is a quantity converging to zero, and  are functions of the  I
make the following two assumptions about the metric (37):

I. The  shall be independent of the variable 
II. The  shall show a certain regular behavior at infinity.
Now, if the metric (37) is to satisfy the differential equation (36) for all  then it

follows that the  must necessarily satisfy certain linear homogeneous partial dif-
ferential equations of second order. If we substitute, following Einstein4

(38)

and assume among the 10 functions  the four relations

(39)

then these differential equations become:

(40)

where the abbreviation

4 “Näherungsweise Integration der Feldgleichungen der Gravitation.” Berichte d. Akad. zu Berlin 1916,
p. 688.

gµν

[65]

w1 x1,= w2 x2,= w3 x3,= w4 ix4,=

gµν.

gµν δµν,=

δµν 1,= δµν 0   µ ν≠( ).=

gµν δµν εhµν …+ +=

ε hµν ws.

hµν w4.
hµν

ε
hµν

hµν kµν
1
2---δµν kss,

s
∑–= kµν kνµ=( )

kµν

kµsd
wsd----------s

∑ 0,= µ 1 2 3 4, , ,=( )

kµν 0,=
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has been used.
Because of the ansatz (38) the relations (39) are restrictive assumptions for the

functions  however I will | show how one can always achieve, by suitable infini-
tesimal transformation of the variables  that those restrictive assump-
tions are satisfied for the corresponding functions  after the transformation.

To this end one should determine four functions  which satisfy
respectively the differential equations

(41)

By means of the infinitesimal transformation

 becomes

or because of (37) it becomes

where I have put

If we now choose

then these functions satisfy Einstein’s condition (39) because of (41), and we have

The differential equations (40), which must be valid according to the above argument
for the  we found, become due to assumption I

 
ws

2

2

∂

∂  
s
∑=

hµν;[66]

w1 w2 w3 w4, ,, ,
h′µν

ϕ1 ϕ2 ϕ3 ϕ4, ,, ,

ϕµ
1
2--- wµ∂
∂ hνν

ν
∑

hµν∂
wν∂

-----------.
ν
∑–=

ws w′s εϕs,+=

gµν

g′µν gµν ε gαν
ϕα∂
wµ∂

---------
α
∑ ε gαµ

ϕα∂
wν∂

---------
α
∑ …+ + +=

g′µν δµν εh′µν …,+ +=

h′µν hµν
ϕν∂
wµ∂

---------
ϕµ∂
wν∂

---------.+ +=

kµν h′µν
1
2---δµν h′ss

s
∑ ,–=

h′µν kµν
1
2---δµν kss

s
∑–= kµν kνµ=( ).

kµν

∂2kµν

w1
2∂

-------------
∂2kµν

w2
2∂

-------------
∂2kµν

w3
2∂

-------------+ + 0,=
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and, since assumption II—mutatis mutandis—allows the conclusion that the 
approach constants at infinity, it follows that these must be constant in general, that
is: By varying the metric of the pseudo-Euclidean geometry under the assumptions I
and II it is not possible to obtain a regular metric that is not likewise pseudo-Euclid-
ean and which also corresponds to a world free of electricity. |

The integration of the partial differential equations (36) can be performed in yet
another case, first treated by Einstein5 and by Schwarzschild.6 In the following I
present for this case a procedure that makes no assumptions about the gravitational
potentials  at infinity, and which moreover offers advantages for my later investi-
gations. The assumptions about the  are the following:
1. The metric is represented in a Gaussian coordinate system, except that  is left

arbitrary, i.e. we have

2. The  are independent of the time coordinate 
3. The gravitation  is centrally symmetric with respect to the origin of coordi-

nates.
According to Schwarzschild the most general metric conforming to these assump-

tions is represented in polar coordinates, where

by the expression

(42)

where  are still arbitrary functions of  If we put

then we are equally justified in interpreting  as spatial polar coordinates. If
we introduce  in (42) instead of  and then eliminate the sign  the result is the
expression

(43)

5 “Perihelbewegung des Merkur.” Situngsber. d. Akad. zu Berlin. 1915, p. 831.
6 “Über das Gravitationsfeld eines Massenpunktes.” Sitzungsber. d. Akad. zu Berlin. 1916, p. 189.

kµν

[67]

gµν
gµν

g44

g14 0,= g24 0,= g34 0.=

gµν x4.
gµν

w1 r ϑcos=
w2 r ϑsin ϕcos=
w3 r ϑsin ϕsin=
w4 l,=

F r( ) r2d G r( ) ϑ2d ϑsin2 ϕ2d+( ) H r( ) l2d+ +

F r( ) G r( ) H r( ), , r .

r* G r( ),=

r* ϑ ϕ, ,
r* r *,

M r( ) r2d r2 ϑ2d r2 ϑsin2 ϕ2d W r( ) l2,d+ + +
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where  mean the two essential, arbitrary functions of  The question is
whether and how these can be determined in the most general way so that the differ-
ential equations (36) enjoy satisfaction. |

To this end the well-known expressions  given in my first communication
must be calculated. The first step in this is the derivation of the differential equations
for geodesic lines by variation of the integral

As Lagrange equations we obtain these:

here and in the following calculation the sign  denotes the derivative with respect to
 By comparison with the general differential equations of geodesic lines:

we obtain for the bracket symbols  the following values, whereby those that
vanish are omitted:

With these we form:

M r( ) W r( ), r .

[68] Kµν K,

M rd
pd------⎝ ⎠

⎛ ⎞
2

r2 ϑd
pd------⎝ ⎠

⎛ ⎞
2

r2 ϑsin2 ϕd
pd------⎝ ⎠

⎛ ⎞
2

W ld
pd------⎝ ⎠

⎛ ⎞
2

+ + +⎝ ⎠
⎛ ⎞ p.d∫

d2r
p2d

-------- 1
2---

M′
M------

rd
pd------⎝ ⎠

⎛ ⎞
2 r

M-----
ϑd
pd------⎝ ⎠

⎛ ⎞
2 r

M----- ϑsin2 ϕd
pd------⎝ ⎠

⎛ ⎞
2 1

2---
W′
M------

ld
pd------⎝ ⎠

⎛ ⎞
2

–––+ 0,=

d2ϑ
p2d

--------- 2
r---

rd
pd------
ϑd
pd------ ϑsin ϑcos ϕd

pd------⎝ ⎠
⎛ ⎞

2
–+ 0,=

d2ϕ
p2d

--------- 2
r---

rd
pd------
ϕd
pd------ 2 ϑcot ϑd

pd------
ϕd
pd------+ + 0,=

d2l
p2d

-------- W′
W------

rd
pd------

ld
pd------+ 0;=

′
r .

d2ws
p2d

------------
µν

s⎩ ⎭
⎨ ⎬
⎧ ⎫ wµd

pd---------
wνd
pd---------

µν
∑+ 0,=

µν

s⎩ ⎭
⎨ ⎬
⎧ ⎫

11
1⎩ ⎭

⎨ ⎬
⎧ ⎫ 1

2---
M′
M------ ,=

22
1⎩ ⎭

⎨ ⎬
⎧ ⎫ r

M-----–  ,=
33
1⎩ ⎭

⎨ ⎬
⎧ ⎫ r

M----- ϑsin2 ,–=

44
1⎩ ⎭

⎨ ⎬
⎧ ⎫ 1

2---
W′
M------ ,        

12
2⎩ ⎭

⎨ ⎬
⎧ ⎫– 1

r---,             
33
2⎩ ⎭

⎨ ⎬
⎧ ⎫

ϑsin ϑ,cos–= = =

13
3⎩ ⎭

⎨ ⎬
⎧ ⎫ 1

r--- ,     =
23
3⎩ ⎭

⎨ ⎬
⎧ ⎫

ϑcot ,     =
14
4⎩ ⎭

⎨ ⎬
⎧ ⎫ 1

2---
W′
W------.=
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 |

K11 r∂
∂ 11

1⎩ ⎭
⎨ ⎬
⎧ ⎫ 12

2⎩ ⎭
⎨ ⎬
⎧ ⎫ 13

3⎩ ⎭
⎨ ⎬
⎧ ⎫ 14

4⎩ ⎭
⎨ ⎬
⎧ ⎫+ + +

⎝ ⎠
⎜ ⎟
⎛ ⎞

r∂
∂ 11

1⎩ ⎭
⎨ ⎬
⎧ ⎫–=

+
11
1⎩ ⎭

⎨ ⎬
⎧ ⎫ 11

1⎩ ⎭
⎨ ⎬
⎧ ⎫ 12

2⎩ ⎭
⎨ ⎬
⎧ ⎫ 21

2⎩ ⎭
⎨ ⎬
⎧ ⎫ 13

3⎩ ⎭
⎨ ⎬
⎧ ⎫ 31

3⎩ ⎭
⎨ ⎬
⎧ ⎫ 14

4⎩ ⎭
⎨ ⎬
⎧ ⎫ 41

4⎩ ⎭
⎨ ⎬
⎧ ⎫+ + +

11
1⎩ ⎭

⎨ ⎬
⎧ ⎫ 11

1⎩ ⎭
⎨ ⎬
⎧ ⎫ 12

2⎩ ⎭
⎨ ⎬
⎧ ⎫ 13

3⎩ ⎭
⎨ ⎬
⎧ ⎫ 14

4⎩ ⎭
⎨ ⎬
⎧ ⎫+ + +

⎝ ⎠
⎜ ⎟
⎛ ⎞

–

1
2---

W″
W-------

1
4---

W ′2

W 2--------- M′
rM------- 1

4---
M′W′
MW--------------––+=

[69]

K22 ϑ∂
∂ 23

3⎩ ⎭
⎨ ⎬
⎧ ⎫

r∂
∂ 22

1⎩ ⎭
⎨ ⎬
⎧ ⎫–=

+
21
2⎩ ⎭

⎨ ⎬
⎧ ⎫ 22

1⎩ ⎭
⎨ ⎬
⎧ ⎫ 22

1⎩ ⎭
⎨ ⎬
⎧ ⎫ 12

2⎩ ⎭
⎨ ⎬
⎧ ⎫ 23

3⎩ ⎭
⎨ ⎬
⎧ ⎫ 32

3⎩ ⎭
⎨ ⎬
⎧ ⎫+ +

22
1⎩ ⎭

⎨ ⎬
⎧ ⎫ 11

1⎩ ⎭
⎨ ⎬
⎧ ⎫ 12

2⎩ ⎭
⎨ ⎬
⎧ ⎫ 13

3⎩ ⎭
⎨ ⎬
⎧ ⎫ 14

4⎩ ⎭
⎨ ⎬
⎧ ⎫+ + +

⎝ ⎠
⎜ ⎟
⎛ ⎞

–

1– 1
2---

rM′
M2--------- 1

M-----
1
2---

rW′
MW----------+ ++=

K33 r∂
∂ 33

1⎩ ⎭
⎨ ⎬
⎧ ⎫–

ϑ∂
∂ 33

2⎩ ⎭
⎨ ⎬
⎧ ⎫–=

+
31
3⎩ ⎭

⎨ ⎬
⎧ ⎫ 33

1⎩ ⎭
⎨ ⎬
⎧ ⎫ 32

3⎩ ⎭
⎨ ⎬
⎧ ⎫ 33

2⎩ ⎭
⎨ ⎬
⎧ ⎫ 33

1⎩ ⎭
⎨ ⎬
⎧ ⎫ 13

3⎩ ⎭
⎨ ⎬
⎧ ⎫ 33

2⎩ ⎭
⎨ ⎬
⎧ ⎫ 23

3⎩ ⎭
⎨ ⎬
⎧ ⎫+ + +

33
1⎩ ⎭

⎨ ⎬
⎧ ⎫ 11

1⎩ ⎭
⎨ ⎬
⎧ ⎫ 12

2⎩ ⎭
⎨ ⎬
⎧ ⎫ 13

3⎩ ⎭
⎨ ⎬
⎧ ⎫ 14

4⎩ ⎭
⎨ ⎬
⎧ ⎫+ + +

⎝ ⎠
⎜ ⎟
⎛ ⎞

–
33
2⎩ ⎭

⎨ ⎬
⎧ ⎫ 23

3⎩ ⎭
⎨ ⎬
⎧ ⎫–

ϑsin2 1 1
2---

rM′
M2---------–– 1

M-----
1
2---

rW′
MW----------++⎝ ⎠

⎛ ⎞=
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Because

we have

and if we put

where now  and  are the unknown functions of  we finally obtain

| so that the variation of the quadruple integral

is equivalent to the variation of the single integral

and leads to the Lagrange equations

(44)

K44 r∂
∂ 44

1⎩ ⎭
⎨ ⎬
⎧ ⎫–

41
4⎩ ⎭

⎨ ⎬
⎧ ⎫ 44

1⎩ ⎭
⎨ ⎬
⎧ ⎫ 44

1⎩ ⎭
⎨ ⎬
⎧ ⎫ 41

4⎩ ⎭
⎨ ⎬
⎧ ⎫+ +=

44
1⎩ ⎭

⎨ ⎬
⎧ ⎫ 11

1⎩ ⎭
⎨ ⎬
⎧ ⎫ 12

2⎩ ⎭
⎨ ⎬
⎧ ⎫ 13

3⎩ ⎭
⎨ ⎬
⎧ ⎫ 14

4⎩ ⎭
⎨ ⎬
⎧ ⎫+ + +

⎝ ⎠
⎜ ⎟
⎛ ⎞

–

1
2---

W″
M-------

1
4---

M′W′
M2-------------- 1

4---
W ′2

MW---------- W′
rM-------+––=

K gssKss
W″
MW---------- 1

2---
W ′2

MW 2------------- 2 M′
rM2---------- 1

2---
M′W′
M2W
--------------–––=

s
∑=

                            2
r2---- 2

r2M
---------- 2 W′

rMW-------------.+ +–

g MW r2 ϑsin=

K g r2W′

MW
---------------⎝ ⎠
⎛ ⎞ ′

 
2rM′ W

M3 2/------------------- 2 MW 2 W
M-----+––

⎩ ⎭
⎨ ⎬
⎧ ⎫

ϑ,sin=

M r
r m–------------,= W w2r m–

r------------,=

m w r ,

K g r2W′

MW
---------------⎝ ⎠
⎛ ⎞ ′

 
2wm′–

⎩ ⎭
⎨ ⎬
⎧ ⎫

ϑ,sin=

[70]

K g r  d ϑ d ϕ d ld∫∫∫∫

wm′ rd∫

m′ 0=
w′ 0.=



THE FOUNDATIONS OF PHYSICS (SECOND COMMUNICATION) 1033

It is easy to convince oneself that these equations indeed imply that all  vanish;
they therefore represent essentially the most general solution of equations (36) under
the assumptions 1., 2., 3., we made. If we take as integrals of (44)  where 
is a constant, and  which evidently is no essential restriction, then for 
(43) results in the desired metric in the form first found by Schwarzschild

(45)

The singularity of the metric at  disappears only if we take  i.e. the
metric of the pseudo-Euclidean geometry is the only regular metric that corresponds
to a world without electricity under the assumptions 1., 2., 3.

If  then  and, for positive  also  prove to be places where
the metric is not regular. Here I call a metric or gravitational field  regular at
some place if it is possible to introduce by transformation with unique inverse a coor-
dinate system for which the corresponding functions  at that place are regular,
that is they are continuous and arbitrarily differentiable at the place and its neighbor-
hood, and have a determinant  that differs from zero.

Although in my view only regular solutions of the basic physical equations repre-
sent reality directly, still it is precisely the solutions with places of non-regularity that
are an important mathematical instrument for approximating characteristic regular
solutions—and in this sense, following Einstein and Schwarzschild, the metric (45),
not regular at  and  is to be viewed as the expression for | gravity of a
centrally symmetric mass distribution in the neighborhood of the origin7. In the same
sense a point mass is to be understood as the limit of a certain distribution of electric-
ity about one point, but I refrain at this place from deriving its equations of motion
from my basic physical equations. A similar situation prevails for the question about
the differential equations for the propagation of light.

Following Einstein, let the following two axioms serve as a substitute for a deriva-
tion from the basic equations:

The motion of a point mass in a gravitational field is described by a geodesic line,
which is a time line8.

The motion of light in a gravitational field is described by a geodesic null line.
Because the world line representing the motion of a point mass shall be a time

line, it is easily seen to be always possible to bring the point mass to rest by true
spacetime transformations, i.e. there are true spacetime coordinate systems with
respect to which the point mass remains at rest.

The differential equations of geodesic lines for the centrally symmetric gravita-
tional field (45) arise from the variational problem

7 To transform the locations  to the origin, as Schwarzschild does, is not to be recommended in
my opinion; Schwarzschild’s transformation is moreover not the simplest that achieves this goal.

8 This last restrictive addition is to be found neither in Einstein nor in Schwarzschild.

Kµν

m α,= α
w 1,= l it=

G rd ϑd ϕd ld, , ,( ) r
r α–------------ r2d r2 ϑ2d r2 ϑsin2 ϕ2d r α–

r------------ l2.d–+ +=

r 0= α 0,=

α 0,≠ r 0= α r α,=
gµν

g′µν

g′

r 0= r α,= [71]

r α=
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and become, by well-known methods:

(46)

(47)

(48)

(49)

where  denote constants of integration. |
I first prove that the orbits in the - space always lie in planes passing

through the center of the gravitation.
To this end we eliminate the parameter  from the differential equations (47) and

(48) to obtain a differential equation for  as a function of  We have the identity

(50)

On the other hand, differentiation of (48) with respect to  gives:

and if we take from this the value of  and substitute on the right of (50), it
becomes

Thus equation (47) takes the form:

a differential equation whose general integral is

r
r α–------------ rd

pd------⎝ ⎠
⎛ ⎞

2
r2 ϑd

pd------⎝ ⎠
⎛ ⎞

2
r2 ϑsin2 ϕd

pd------⎝ ⎠
⎛ ⎞

2 r α–
r------------ td

pd------⎝ ⎠
⎛ ⎞

2
–+ +⎝ ⎠

⎛ ⎞ pd∫δ 0,=

r
r α–------------ rd

pd------⎝ ⎠
⎛ ⎞

2
r2 ϑd

pd------⎝ ⎠
⎛ ⎞

2
r2 ϑsin2 ϕd

pd------⎝ ⎠
⎛ ⎞

2 r α–
r------------ td

pd------⎝ ⎠
⎛ ⎞

2
–+ + A,=

pd
d r2 ϑd

pd------⎝ ⎠
⎛ ⎞ r2 ϑsin ϑcos ϕd

pd------⎝ ⎠
⎛ ⎞

2
– 0,=

r2 ϑsin2 ϕd
pd------ B,=

r α–
r------------ td

pd------ C ,=

A B C, ,
[72] rϑϕ

p
ϑ ϕ.

pd
d r2 ϑd

pd------⎝ ⎠
⎛ ⎞

pd
d r2 ϑd

ϕd------
ϕd
pd------⋅⎝ ⎠

⎛ ⎞=

2r rd
ϕd------

ϑd
ϕd------ r2d2ϑ

ϕ2d
---------+⎝ ⎠

⎛ ⎞ ϕd
pd------⎝ ⎠

⎛ ⎞
2

r2 ϑd
ϕd------

d2ϕ
p2d

---------.+=

p

2r rd
ϕd------ ϑsin2 2r2 ϑ ϑcossin dϑ

ϕd-------+⎝ ⎠
⎛ ⎞ ϕd

pd------⎝ ⎠
⎛ ⎞

2
r2 ϑsin2 d2ϕ

p2d
---------+ 0,=

d2ϕ
p2d

---------

pd
d r2 ϑd

pd------⎝ ⎠
⎛ ⎞ d2ϑ

ϕ2d
--------- 2 ϑcot ϑd

ϕd------⎝ ⎠
⎛ ⎞

2
–⎝ ⎠

⎛ ⎞ r2 ϕd
pd------⎝ ⎠

⎛ ⎞
2
.=

d2ϑ
ϕ2d

--------- 2 ϑcot ϑd
ϕd------⎝ ⎠

⎛ ⎞
2

– ϑ ϑ,cossin=
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where  and  denote constants of integration.
This provides the desired proof, and it is therefore sufficient for further discussion

of geodesic lines to consider only the value  Then the variational problem
simplifies as follows

and the three differential equations of first order that arise from it are |

(51)

(52)

(53)

The Lagrange differential equation for 

(54)

is necessarily related to the above equations, in fact if we denote the left sides of (51),
(52), (53), (54) with [1], [2], [3], [4] respectively we have identically

(55)

By choosing  which amounts to multiplying the parameter  by a con-
stant, and then eliminating  and  from (51), (52), (53) we obtain that differential
equation for  as a function of  found by Einstein and Schwarzschild,
namely:

(56)

This equation represents the orbit of the point mass in polar coordinates; in first
approximation for  with   the Kepler motion fol-
lows from it, and the second approximation than leads to the most shining discovery
of the present: the calculation of the advance of the perihelion of Mercury.

According to the axiom above the world line for the motion of a point mass shall
be a time line; from the definition of the time line it thus follows that always 

ϑ ϕ a+( )cossin b ϑcos+ 0,=

a b

ϑ 2 π⁄ .=

r
r α–------------ rd

pd------⎝ ⎠
⎛ ⎞

2
r2 ϕd

pd------⎝ ⎠
⎛ ⎞

2 r α–
r------------ td

pd------⎝ ⎠
⎛ ⎞

2
–+

⎩ ⎭
⎨ ⎬
⎧ ⎫ pd∫δ 0,=

[73]
r

r α–------------ rd
pd------⎝ ⎠

⎛ ⎞
2

r2 ϕd
pd------⎝ ⎠

⎛ ⎞
2 r α–

r------------ td
pd------⎝ ⎠

⎛ ⎞
2

–+ A,=

r2 ϕd
pd------ B,=

r α–
r------------ td

pd------ C .=

r

pd
d 2r

r α–------------ rd
pd------⎝ ⎠

⎛ ⎞ α
r α–( )2------------------- rd

pd------⎝ ⎠
⎛ ⎞

2
2r ϕd

pd------⎝ ⎠
⎛ ⎞

2
– α

r2---- td
pd------⎝ ⎠

⎛ ⎞
2

+ + 0=

[1]d
pd---------- 2 ϕd

pd------ [2]d
pd----------– 2 td

pd------ [3]d
pd----------+ rd

pd------[4].=

C 1,= p
p t

ρ 1 r⁄= ϕ

ρd
ϕd------⎝ ⎠

⎛ ⎞
2 1 A+

B2------------- Aα
B2-------- ρ ρ2 αρ3.+––=

α 0= B αb,= A 1– αa+=

A 0.<
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We now ask in particular whether a circle, i.e.  can be the orbit of a
motion. The identity (55) shows that in this case—because of —equation
(54) is by no means a consequence of (51), (52), (53); the latter three equations there-
fore are insufficient to determine the motion; instead the necessary equations to be
satisfied are (52), (53), (54). From (54) it follows that |

 (57)

or that for the speed  on the circular orbit

(58)

On the other hand, since  (51) implies the inequality

(59)

or by using (57)

(60)

With (58) this implies the inequality for the speed of the mass point moving on a cir-
cle9

(61)

The inequality (60) allows the following interpretation: From (58) the angular
speed of the orbiting point mass is

So if we want to introduce instead of  the polar coordinates of a coordinate sys-
tem co-rotating about the origin, we only have to replace

After the corresponding spacetime transformation the metric

9 Schwarzschild’s (loc. cit.) claim that the speed of the point mass on a circular orbit approaches the
limit  as the orbit radius is decreased corresponds to the inequality  and should not be
regarded as accurate, according to the above.

r const.=
rd pd⁄ 0=

[74] 2r ϕd
pd------⎝ ⎠

⎛ ⎞
2

– α
r2---- td

pd------⎝ ⎠
⎛ ⎞

2
+ 0=

v

v2 r ϕd
td------⎝ ⎠

⎛ ⎞
2 α

2r-----.= =

A 0,<

r2 ϕd
pd------⎝ ⎠

⎛ ⎞
2 r α–

r------------ td
pd------⎝ ⎠

⎛ ⎞
2

– 0<

r 3α
2-------.>

1 2⁄ r α≥

v 1
3

-------.<

ϕd
td------

α
2r3--------.=

r ϕ,

ϕ     by     ϕ α
2r3--------t .+
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becomes

| Here the inequality  is satisfied due to (60), and since the other inequali-
ties (31) are satisfied, the transformation under discussion of the point mass to rest is
a true spacetime transformation.

On the other hand, the upper limit  found in (61) for the speed of a mass
point on a circular orbit also has a simple interpretation. According to the axiom for
light propagation this propagation is represented by a null geodesic. Accordingly if
we put  in (51), instead of the inequality (59) the result for circular light prop-
agation is the equation

together with (57) this implies for the radius of the light’s orbit:

and for the speed of the orbiting light the value that occurs as the upper limit in (61):

In general we find for the orbit of light from (56) with  the differential
equation

(62)

for  it has the circle  as a Poincaré “cycle”—corresponding to

the circumstance that thereupon  is a double factor of the right-hand side.

Indeed in this case—and correspondingly for the more general equation (56)—the
differential equation (62) possesses infinitely many integral curves, which approach
that circle as the limit of spirals, as demanded by Poincaré’s general theory of cycles.

If we consider a light ray approaching from infinity and take  small compared
to the ray’s distance of closest approach from the center of gravitation, then the light
ray has approximately the form of a hyperbola with focus at the center.10 |

r
r α–------------ rd 2 r2 ϕd 2 r α–

r------------ td 2–+

r
r α–------------ rd 2 r2 ϕd 2 2αr  ϕd  td α

2r----- r α–
r------------–⎝ ⎠

⎛ ⎞ td 2.+ + +

[75]g44 0<

1 3⁄

A 0=

r2 ϕd
pd------⎝ ⎠

⎛ ⎞
2 r α–

r------------ td
pd------⎝ ⎠

⎛ ⎞
2

– 0;=

r 3α
2-------=

v 1
3

-------.=

A 0=

ρd
ϕd------⎝ ⎠

⎛ ⎞
2 1

B2------ ρ2 αρ3;+–=

B 3 3
2----------α= r 3α

2-------=

ρ 2
3α-------–

α
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A counterpart to the motion on a circle is the motion on a straight line that passes
through the center of gravitation. We obtain the differential equation for this motion if
we set  in (54) and then eliminate  from (53) and (54); the differential equa-
tion so obtained for  as a function of  is

(63)

with the integral following from (51)

(64)

According to (63) the acceleration is negative or positive, i.e. gravitation acts attrac-
tive or repulsive, according as the absolute value of the velocity

or

For light we have because of (64)

light propagating in a straight line towards the center is always repelled, in agreement
with the last inequality; its speed increases from 0 at  to 1 at 

When  as well as  are small, (63) becomes approximately the Newtonian
equation

10 A detailed discussion of the differential equations (56) and (62) will be the task of a communication
by V. Fréedericksz to appear in these pages.
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