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Reconsidering Schwarzschild’s original solution
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We analyse the Schwarzschild solution in the context of the historical development of its present use, and explain the
invariant definition of the Schwarzschild’s radius as a singular surface, that can be applied to the Kerr-Newman solution
too.
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1. Introduction: Schwarzschild’s solution and the “Schwarzschild” solution

Nowadays simply talking about Schwarzschild’s solution requires a preliminary reassessment of the historical record
as conditio sine qua non for avoiding any misunderstanding. In fact, the present-day reader must be firstly made
aware of this seemingly peculiar circumstance: Schwarzschild’s spherically symmetric, static solution (Schwarzschild
1916) to the field equations of the version of the theory proposed by Einstein (1915a) at the beginning of November
1915 is different from the “Schwarzschild” solution that is quoted in all the textbooks and in all the research papers.
The latter, that will be here always mentioned with quotation marks, was found by Droste (1917), Hilbert (1917)
and Weyl (1917), who worked instead by starting from the last version of Einstein’s theory (Einstein 1915b).1 As
far as the vacuum is concerned, the two versions have identical field equations; they differ only because of the
supplementary condition

det (gik) = −1 (1)

that, in the theory of November 11th, limited the covariance to the group of unimodular coordinate transformations.
Due to this fortuitous circumstance, Schwarzschild could not simplify his calculations by the choice of the radial
coordinate made e.g. by Hilbert; he was instead forced to adopt “polar coordinates with determinant 1” that led
him to a solution depending on two parameters instead of the single one found by Hilbert. Schwarzschild could
then fix one of the parameters in such a way as to push in the “Nullpunkt” the singularity that is named after
him. This move is impossible with Hilbert’s choice, and this is the origin of the difference between Schwarzschild’s
solution and the “Schwarzschild” solution of the literature which, to put an end to the present confusion, should
be more aptly named after Hilbert.

1Recent inspection of the relevant documents told that Schwarzschild contacted only Einstein about the question of the solution
(Treder).
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2. Solving Schwarzschild’s problem without fixing the radial coordinate

In order to display the difference between the spherically symmetric, static solutions found with different choices
for the radial coordinate, let us briefly recall the calculations done by Combridge (1923) and by Janne (1923)
without fixing the radial coordinate at all. By following de Sitter (1916), they found that the line element of the
most general static, spherically symmetric field can be reduced by choice of adapted coordinates to the form

ds2 = − exp λdr2 − exp µ[r2(dϑ2 + sin2 ϑdϕ2)] + exp νdt2 (2)

in symmetry adapted coordinates. Here λ, µ, ν are functions of r only. The proof of the correctness of de Sitter’s
choice can be found e.g. in Eiesland’s paper (1925). By availing of the field equations already made explicit by
de Sitter (1916), the mentioned authors found that a solution that is Minkowskian at the spatial infinity could be
expressed in terms of one arbitrary function f(r) and of its derivative f ′(r) by setting:

exp λ =
f ′2

1 − 2m/f
, (3)

exp µ =
f2

r2
, (4)

exp ν = 1 − 2m/f, (5)

where m is a constant, while of course the arbitrary function f must have the appropriate behaviour as r → ∞.
It is now an easy matter to reproduce the results that one obtains when the most popular coordinate conditions
are imposed. With the exception of Schwarzschild’s case, the latter were adopted with the aim of making the
calculations easier. However, a simple glance to the papers by Combridge and Janne shows that the calculations
were not as extra vires as to be in urgent need of simplification.

Setting λ = 0 provides Droste’s initial way of fixing the radial coordinate, as given in his equation (4). Despite
this initial choice, the “Schwarzschild” solution made its first appearance just in Droste’s paper 2.

Choosing µ = 0 leads instead straight to the “Schwarzschild” solution, i.e. to Hilbert’s form (Hilbert 1917),
given by equation (45) of his monumental paper. One notes that if one attributes to r the usual range 0 ≤ r < ∞
equation (5) would only admit the value m = 0 of the mass constant. Maybe this is the reason why Hilbert deviated
from de Sitter’s choice (2) for the line element and dropped the a priori condition of persistence of the sign for
the components of the metric. The omission allows for a nontrivial solution, but also for the appearance of the
well known singularity of the components of the metric at the “Schwarzschild” radius. The singularity separates
an outer region r > 2m, that with the lapse of the years proved itself capable to precisely account for the workings
of Nature, from an inner region whose occurrence soon evolved from a slightly annoying peculiarity into a major
conundrum (Brillouin 1923).

Posing λ = µ produces the solution expressed in isotropic coordinates, ingeniously found by Weyl through
a coordinate transformation (Weyl 1917) by starting from his own “Schwarzschild” solution. Here again we get
a singular behaviour, this time due to the vanishing of det(gik) when r = m/2. There is no track here of the
tantalizing inner region of Hilbert. With isotropic coordinates Nature is well accounted for, maybe too well. There
is in fact a little redundance: only the outer part of Hilbert’s solution is allowed to appear, but it appears twice,
once for m/2 < r < ∞, and a second time in the range 0 < r < m/2. The two replicas happen to be joined just
at the “Schwarzschild” singularity. Confronted with such embarras de richesse Weyl flatly declared that in Nature
only “ein Stück” of one of the two copies, not reaching the singularity, must be realised (Weyl 1917). Einstein
and Rosen (1935) used the full structure to derive an argument for the mass to be positive. They felt one could
postulate the necessity of hiding the curvature singularity by constructing such a “bridge” and identify it with a
particle. Their hope to get a hint at some kind of quantisation was not met, but they found that only a positive
mass allows to find that bridge.

Schwarzschild’s true and authentic solution (Schwarzschild 1916), though written with the usual polar coordi-
nates rather than with the original “polar coordinates of determinant 1”, can instead be retrieved by imposing the
condition λ + 2µ + ν = 0. Due to (3), (4) and (5) f must then fulfil the equation

f ′2f4

r4
= 1, (6)

2Insisting with the coordinate condition λ = 0 leads one to define f through the hardly solvable equation

r = f(1 − 2m/f)1/2 + m ln
f1/2 + (f − 2m)1/2

f1/2 − (f − 2m)1/2
+ const.

Th is is why Droste changed horses in itinere and eventually su cceeded in b ecoming the forerunner o f Hilb ert.
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i.e., with appropriate choice of sign, f ′ = r2/f2. The latter equation integrates to

f = (r3 + �)1/3 (7)

where � is a second integration constant, besides m. Had not he died just a few months after his discovery due
to a rare illness contracted while at war on the Russian front, one could say that Schwarzschild, besides being
very clever, was also a very lucky man. In fact the burden of the coordinate condition (1) he was obtorto collo
forced to confront by the version of Einstein’s theory he was aware of turned out to be a blessing, when compared
to the simplifying assumptions adopted by the later authors, that could enjoy the eventually conquered general
covariance (Einstein 1915b), (Hilbert 1915). Although the move was later declared not recommendable by Hilbert
with a footnote of devastating authority that decided the destiny of the true Schwarzschild’s solution 3, with his
extra parameter � Schwarzschild had the chance of imposing the continuity of the components of gik in the range
0 < r < ∞. He did so by setting

� = (2m)3 (8)

thereby dispatching in the “Nullpunkt” what the posterity would have unanimously called “the singularity at the
Schwarzschild radius”.

3. The role of hyperbolic motion in choosing Schwarzschild’s solution

Schwarzschild’s position (8) is sufficient for complying with de Sitter’s prescription (2) for the line element, but it
is by no means necessary. Larger values of � fulfil the prescription as well; moreover, the solutions with � ≥ (2m)3

are different from each other, as the simple consideration of the maximum value attained by the scalar curvature in
each of them immediately shows. One needs an additional postulate for fixing the value of �. Abrams (1989) has
shown that one can avail of an assumption that seems to be quite appropriate both from a geometrical and from a
physical standpoint. Let us consider a test body whose four-velocity is ui; its acceleration four-vector is defined as

ai ≡ Dui

ds
≡ dui

ds
+ Γi

klu
kul, (9)

where D/ds indicates the absolute derivative. From it one builds the scalar quantity

α = (−aia
i)1/2. (10)

The motion of a test body kept at rest in the static, spherically symmetric field whose line element, in adapted
coordinates, is given by equations (3), (4) and (5), is defined by postulating the constancy of r, ϑ and ϕ. At first
glance, the definition of the world lines of rest seems to depend on the particular coordinates we use. However, we
can identify the congruence of world-lines of our particles at rest through use of the Killing vectors of the metric.
There is only one time-like Killing congruence that has not only the Killing property, but is hypersurface orthogonal
(ξ[k,lξm] = 0) too. It is the congruence we identify in our coordinates with r, ϑ, ϕ constant. It obeys the differential
equations

D
ds

(
ai

α

)
− αui = 0, α = const; (11)

therefore the test body under question describes an invariantly defined motion, that Rindler (1960) aptly called
hyperbolic. The only nonvanishing component of ai in a field with the line element (2) is

a1 =
1
2
ν ′ exp (−λ). (12)

For the solutions given by (3), (4) and (5) the constant α has the expression

α =
[

m2

f3(f − 2m)

]1/2

(13)

in terms of the mass constant m and of the arbitrary function f . As noticed by Rindler, besides the geometrical
meaning, α has an immediate physical meaning. Let us consider a locally Minkowskian coordinate system whose
spatial coordinates be centered at the position r = r0, ϑ = ϑ0, ϕ = ϕ0; the quantity α equals the strength of the
gravitational pull measured by a dynamometer that holds a unit mass at rest at the given position.

3See footnote 1 at page 71 of Hilbert (1917).
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By substituting (7) in (13) one sees that, with a fixed value of the mass constant, the maximum value of the
force that can be measured by the dynamometer is different for different values of �. As already noticed, the
solutions are geometrically and physically different, and we need some reason for choosing one of them. Abrams’
argument is the following (Abrams 1989): since up to now no experimental evidence has been found for attributing
a finite limiting value to α, we cannot help mimicking in the case of general relativity the way out adopted in
Newtonian physics. There the norm of the force exerted by the gravitational field of an ideal pointlike mass on
a test body tends to infinity as the test body is brought nearer and nearer to the source of the field. According
to equation (13), in the static spherically symmetric field defined by (3), (4) and (5) α → ∞ only when f → 2m,
because f → 0 is prohibited by equation (5). If one chooses the arbitrary function f according to (7), α is allowed
to grow without limit at r = 0 only when � is chosen just in the way kept by Schwarzschild in his fundamental
paper of 1916 4.

We add a remark on the Killing congruences that shows how to generalize the argument for the full Kerr-
Newman-solution. The elements

ξk ∂

∂xk
= λ

∂

∂t
+ µ

∂

∂ϕ
(14)

of the Killing group (ξk;l + ξl;k = 0) of the Kerr-Newman metric

ds2 =
�2

∆
dr2 + �2dϑ2 +

sin2 ϑ

�2
((r2 + J2)dϕ − Jdt)2

− ∆
�2

(dt − J sin2 ϑdϕ)2 (15)

∆ = r2 + J2 + Q2 − 2Mr

�2 = r2 + J2 cos2 ϑ

define invariantly a set of orbits. The acceleration on these orbits

α2 = −gija
iaj = −gij(

ξi

N
);k

ξk

N
(
ξj

N
);l

ξl

N
, (16)

N =
√
−gmnξmξn

contains always the factor 1/
√

∆ and diverges for orbits on the surface ∆ = 0. All Killing congruences are spacelike
at ∆ = 0 except for the case given by

µ = λJ/(r2
0 + J2) .

This congruence is timelike for r > r0 = M +
√

M2 − J2 − Q2 and null on the surface r = r0 = M +√
M2 − J2 − Q2.5 Its acceleration diverges in the limit r → r0. In the case of a static metric, J = 0, the

congruence turns out to be the hypersurface-orthogonal one. Hence, the surface r = r0 = M +
√

M2 − J2 − Q2

is singular in the Kerr-Newman case, too. Any Killing congruence that remains timelike in the outer vicinity will
show the singularity.

One can see that the singularity in the acceleration is connected with the norm of the Killing vector becoming
zero or the determinant of the metric in stationary coordinates becoming zero. Let us use the notation Ξ = ξaξa.
The velocity along the orbits is given by uk = ξk/

√
Ξ, the acceleration ak by Ξ2ak = Ξ ξk

;lξ
l − ξkξlξbξ

b
;l. The

norm of this expression is

Ξ4 akak =
1
4

Ξ2Ξ,kΞ,lg
kl − Ξ(Ξ;lξ

l)2

We may, of course, introduce coordinates in which ξk = δk
0 . These coordinates show that Ξ,lξ

l = g00,0 = 0. We
obtain

akak =
1

4Ξ2
Ξ,kΞ,lg

kl

When Ξ has a zero of some order n on some surface of orbits, and the space-part metric has no singularity, the
norm of the acceleration has to show a second-order infinity. If the space-part metric has a singularity, but the

4To dispel any possible misunderstanding, it is stressed that no meaning is attributed to the accidental vanishing of the radial
coordinate where α → ∞.

5The physical interpretation of the congruence is a swarm of particles kept at rest in the field. This rest, in the static case (J = 0),
is just no change in the spatial coordinates. In the general case, this “rest frame” undergoes a drag by the rotation of the source. The
drag is given by µ �= 0.
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determinant of the metric remains finite, as in the Schwarzschild case, the infinity of akak is still of first order. If
akak becomes infinite while Ξ has no zero, it must be due to a zero of the determinant of the metric tensor in the
coordinates defined.6

4. The analytic extensions of the “Schwarzschild” solution

As previously shown, Hilbert’s solution was born out of the accidental choice of the radial coordinate r produced
by setting µ = 0 in equation (4); hence there is no reason to accept as unavoidable consequences of the very field
equations of general relativity all the features stemming from this choice, in particular the existence of the region
for r < 2m. However Hilbert’s solution was soon perceived as the unique “Schwarzschild” solution and as such
it became the obligatory starting point of all the theoretical exertions. The curious circumstance that what was
initially meant to model the field of a “Massenpunkt” displayed two singularities, one at the “Schwarzschild radius”,
and a second one for r = 0, instead of the single one appearing in Newtonian physics, suggested the idea that one
of them had to be spurious 7. Since the Kretschmann scalar happened to be finite at the “Schwarzschild radius”,
while it was infinite at r = 0, the conviction arose that the “true” singularity was the one at r = 0. Therefore the
singularity displayed by the components of the metric at r = 2m had to be a mere mathematical mishap, devoid
both of geometrical and of physical meaning. A reason had to be given for the wrongdoing, and it was found in a
presumed inadequacy of the coordinate system at r = 2m.

The search thus started for different coordinate systems that allowed to erase the singular behaviour displayed
by gik at r = 2m. Already in 1924 Eddington had unintentionally succeeded in the task (Eddington 1924) by
rewriting the static “Schwarzschild” solution in stationary form through the introduction of what would have been
called the Eddington-Finkelstein coordinates 8. In 1933 Lemâıtre (1933) achieved the same result by rewriting the
“Schwarzschild” metric with cosmological term in time-dependent form. Another solution to the problem was given
in 1950 by Synge with a geometrically inspired paper (Synge 1950) that represents the now forgotten forerunner
of the maximal extensions of the “Schwarzschild” metric obtained by Kruskal (1960) and Szekeres (1960).

All these exertions entail coordinate transformations x′i = f i(xk) whose derivatives happen to be singular at
the “Schwarzschild” radius in just the appropriate way for providing a transformed metric that is regular there.
One cannot help noticing that the restriction to admissible coordinate transformations, which looked mandatory
in the old papers, with the lapse of the decades has become optional and dependent on taste. In the time span
that goes from Hilbert’s paper (1917) to, say, the publication of Lichnerowicz’ book (Lichnerowicz 1955) with his
axioms inscribed in the first chapter, transformations like the ones needed to efface the “Schwarzschild” singularity
were simply disallowed.

Nevertheless, the rule was violated here and there, and already in Synge’s paper one finds an explicit program
of transgression, since for the latter author “it is precisely the non-regular transformations which are interesting”
(Synge 1950). But the value of scalars cannot be altered by any transformation, however “interesting”. Therefore
in all the alternative forms of the “Schwarzschild” metric mentioned in this section the singularity in the metric
components at the “Schwarzschild” radius is canceled, but the norm α of the acceleration of the hyperbolic motion
on the invariantly specified Killing orbit remains infinite at the position of the erased singularity. Since α has a
well defined physical meaning, an infinite value of α in the middle of a manifold should not be so light-heartedly
overlooked: either this singularity should be removed from that position, or a physical argument for its existence
there should be given.

Already in 1916 Karl Schwarzschild had deliberately sent the singularity in the “Nullpunkt”, thus stipulating
that there his idealised vacuum model ceased to be physically meaningful, because the source of the field had been
attained.
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