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Abstract. We discuss why there are no negative gravitational sources in General Relativity and
show that it is possible to extend the classical theory such that repulsive gravitational interaction
occurs. This is the summary of a talk given at the 17th International Conference on Supersymmetry
and the Unification of Fundamental Interactions in Boston, June 2009.
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WHY NO NEGATIVE GRAVITATIONAL CHARGES?

In General Relativity (GR) the gravitational charge of the source, its energy, is always
positive. If one considers the Newtonian potential describing the interaction between
two point masses, it seems straightforward to introduce negative gravitational masses:
to obtain a repulsive interaction, just change the sign of one of the masses. Unlike
Electrodynamics which is mediated by a spin-1 field, the gravitational interaction is
transmitted by a spin-2 field, thus like charges will attractand unlike charges repel.

So far, so good. But if one takes into account the motion of a testparticle in a
gravitational background field, one knows that this curve, ageodesic, is independent of
the mass of the particle. If the curve does not depend on the particle’s mass then a particle
of negative gravitational mass, henceforth called ‘antigravitating,’ would fall towards a
gravitating source of either kind. One then had a situation in which a gravitating and an
antigravitating particle did both, attract and repel [1]; ascenario that is very implausible.

Another common objection to antigravitation is that the existence of negative masses
would allow for infinite production of particle pairs. Because energy conservation does
not forbid production of a zero net sum out of nothing, a disastrous vacuum decay would
result. While this is a quantum effect and the following discusses a merely classical
scenario, it is a serious concern that will be briefly addressed later.

A frequently occurring misunderstanding stems from the definition of antigravitation,
so some words of clarification are in order. Antigravitationhas sometimes been used [2]
to mean a repulsive gravitational interaction between particles and their antiparticles.
While experimental data on the gravitational interaction of antiparticles is not entirely
conclusive, a different gravitational behavior of antiparticles is from a quantum field
theoretical perspective not very plausible. What is here referred to as antigravitating
particles instead is an entirely new type of matter that, in the simplest case, would be
a copy of the Standard Model (SM). These particles are identical to the particles of the
SM except for their gravitational interaction. They attract each other but repel our usual
matter.

The gravitating and antigravitating particles interact only gravitationally. Thus, not
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only would the antigravitating matter be dark, the interaction is also too weak for these
particles to be produced in experiments on Earth. Such matter would be detectable
only by its gravitational effects. Since it was repelled by our normal matter during the
formation of structures in the universe, one would not expect it to be present in our
vicinity in sizeable amounts. It would instead collect in what we think are voids.

We will in the following propose such an extension of GR with negative gravitational
charges based on the assumption that the antigravitating particles are just like the com-
mon particles, and that exchanging both sorts of particles would not alter the physics.
We are thus postulating a symmetry between gravitating and antigravitating particles.
This does not necessarily mean though that the amount of bothtypes of matter in our
universe is the same.

Since we know from cosmological and astrophysical observations that our under-
standing of the matter content of the universe and/or its gravitational dynamics is incom-
plete, such a symmetry is appealing for both theoretical as well as experimental reasons.
It is thus not surprising it has been studied before in various approaches [3, 4, 5, 6, 7, 8].
The scenario outlined in the following, and explained in more detail in [9], has the virtue
of being entirely covariant and not allowing vacuum decay because it does not necessi-
tate negative kinetic energies.

HOW TO ADD NEGATIVE GRAVITATIONAL CHARGES

As discussed above, an antigravitating particle that moveson a geodesic is implausible.
However, a geodesic is uniquely defined only through the connection employed, and the
connection itself is uniquely defined only by requiring it tobe torsion-free and metric-
compatible. Since torsion does not affect geodesics, one wants a second connection that
is torsion-free but not metric-compatible. To that end, introduce a second metrich over
the manifold, and construct a second derivative, denotedh∇, that is compatible, not
with the usual metricg, but with the second metrich. The antigravitating particles will
feel a background with distance measures defined by the second metric and move on
geodesics defined according to this metric. With this derivative one can then define a
second curvature tensor and its contractions as usual.

We refer in the following to the antigravitating (normally gravitating) fields, particles
and observers ash-fields,h-particles,h-observers etc (g-fields,g-particles,g-observers).
It is straightforward to write down a Lagrangian for theh-fields by replacing the usual
metric with the second metric and the usual derivative with the corresponding second
derivative. One should not forget to also replace the volume-element, since otherwise
Gauss’s law cannot be applied and the equations of motion oneobtains are not symmetric
to the usual ones. For a massless scalarh-field φ the action then looks like

S =
∫

d4x
√

−h hνκ (h)∇κ φ (h)∇ν φ . (1)

Theseh-fields are tensors over the manifold and can be expanded in a local basis of the
tangential space. However, there is no tool to contract the basis of the tangential space
in which theh-fields are expanded with those of theg-fields. The local bases of both
spaces are trivially isomorphic in each point, but they cannot be directly compared to

Antigravitation September 18, 2009 2



tell whether they are indeed the same. This is conceptually similar to Special Relativity.
We have two observers. Here, one is constituted or normal matter, the other one of anti-
gravitating matter. They do both describe their physics in tensor equations and we know
these equations have the same form for both observers. Yet tocompare them, we need to
find a transformation from one set of observables to the other. These transformations to
pull over the tensors of the antigravitating observer to that of the normally gravitating,
and vice versa we will call the ‘pull-overs.’

The pull-overs do assign observables forh-fields to theg-observer, and observables
for g-fields to theh-observer. By this, they do preserve the tensor structure ofobjects, and
also the covariance of derivatives. In particular, for theg-observer they assign a 2-tensor
h = Ph(h) to the second metrich, and similarly theh-observer assigns a pulled-over
2-tensorg = Pg(g) to our metricg. Note underlines. The underlined quantities are the
observables of theh-observer, but cannot be observed directly by theg-observer. Only
after applying the pull-over are they converted into standard tensor-fields. The situation
is the same the other way round.

We further define a mapa that transforms the one metric into the pull-over of the other

gελ = a ν
ε a κ

λ hνκ . (2)

Since bothg andh are symmetric,a is not completely determined by (2). We fix the
remaining six degrees of freedom by requiring it to be symmetric, i.e. gκνaε

ν = aεκ =
aκε . We can pull overa by

a ν
ε = [Pg]

ε
ε a ν

ε
[

Ph
]ν

ν , (3)

which then gives the relation

gελ = a ν
ε a κ

λ hνκ . (4)

This pulled-over quantity is also required to be symmetric.It is further useful to define
a combination ofa and the pull-overs that mapsg to h via

a ν
ε = a ν

ε [Ph]
ν
ν , gελ = a ν

ε a κ
λ hνκ . (5)

And by raising and lowering some indices we also have

gελ = a ν
ε aλν , hνκ = aε

νaεκ . (6)

This introduced mapa is a convenience and not an independent dynamical field, since it
is defined by relatingg to Ph(h).

Now that the basics of the bi-metric formalism is in place, the field equations need
to be found to determine the equations of motion for the second metric. We thus
extend Einstein’s field equations by adding a negative source term constituted of the
antigravitating type of matter. Then, making use of the symmetry principle, we add a
second set of equations for the second metric. For this metric, it is theh-source that has
the usual sign, whereas ourg-fields have the negative sign.

However, if one simply does this, the system of equations is over-constrained due to
the contracted Bianchi identities. These two times four equations require the additional
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source terms to be covariantly conserved, yet there are no more degrees of freedom left.
The reason for this inconsistency is the neglect to pull overthe source terms which adds
additional degrees of freedom. Together with the requirement of torsion-free-ness the
pull-overs provide the missing two times four degrees of freedom. In special cases, the
pull-overs are just the identity but in general they are non-trivial. The field equations
then read

(g)Rκν −
1
2

gκν
(g)R = 8πG

(

Tκν −

√

h
g

a ν
ν a κ

κ T νκ

)

(7)

(h)Rνκ −
1
2

hνκ
(h)R = 8πG

(

T νκ −

√

g

h
aκ

κaν
ν Tκν

)

, (8)

with

Tµν = −

1
√

−g
δL

δgµν +
1
2

gµνL , T νκ = −

1
√

−h

δL

δhνκ +
1
2

hνκL . (9)

Also note the factors converting the measures of the stress-energy tensors in Eqs. (7,8),
since they are densities.

There is an action principle from which the above equation can be derived [9]. Though
the constrained space of this summary is insufficient for more details, it should be
mentioned that the action does not have any negative kineticenergy terms. The minus
sign in the source term stems from the variation over the bothmetrics, together with the
requirement that the variation of thea’s vanishes, i.e.δaνκ = δaνκ = 0. The change of
sign thus appears only for the sources of the gravitational field. It does not appear if one
takes the variation with respect to the fields which providesthe stress-energy that can be
considered a generalization of ‘inertial’ mass. Then, to finally come back to the concern
about an unstable vacuum, both the gravitational and the inertial mass of particles is
conserved separately which means in particular it is not possible to produce a pair of
gravitating and anti-gravitating particles out of the vacuum.

Note added: A no-go theorem for bi-metric gravity with positive and negative mass
was recently put forward in [10]. It has been shown in [11], that this does not affect the
here discussed model.
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