

DENSITY LIMITS IN TOROIDAL PLASMAS

MARTIN GREENWALD

MIT - PLASMA SCIENCE & FUSION CENTER

Presented at43rd Annual Meeting of the APS Division of Plasma Physics Long Beach, CA October 29, 2001

ACKNOWLEDGEMENTS

- All people who have worked in this area over the years
- Note particularly people who contributed figures and ideas for this talk

- Not enough time to show all deserving work
- \bullet Mistakes in interpretation are my own

OPERATIONAL LIMITS

- • Magnetic confinement devices don't operate at arbitrary plasma parameters
- There are well established, **distinct** limits on plasma **pressure, current, and density**
- Understanding these limits and their implications has always been an active area of research

Plasma Density (n_e)

DENSITY LIMITS - AN IMPORTANT ISSUE FOR MAGNETIC FUSION

- \bullet $R_{DT} \propto n^2 \langle \sigma v \rangle$
- \bullet Plasma pressure limited by MHD stability
- At fixed pressure, there is an optimum temperature ➙ optimum density
- **No guarantee that this density is achievable in any given device**
- Critical issue for conventional tokamak reactor

- What physics can limit the density?
	- Ideal MHD only cares about pressure (and current) not density
		- ✸ Temperature profile influences current profile
		- ✸ (Resistive MHD could be a factor at low temperatures)
	- $-$ Radiation cooling $\; P_{RAD}\propto n_e^2 f_Z R(T_e)$
	- − Neutral shielding: fueling limits
	- − Density or collisionality dependent transport ➙ edge cooling
- **No widely accepted first principles theory available**
- **Not even agreement on critical physics**

OUTLINE OF TALK

- Experimental observations including
	- − Tokamak
	- − Stellarators
	- − Reversed Field Pinches (RFP)
	- − Spheromaks and FRCs
- \bullet Physics basis for density limit
	- − Neutrals
	- − Radiation models
	- − Role of transport physics
- Summary and Discussion

IN TOKAMAKS, LIMIT ULTIMATELY MANIFESTS ITSELF AS DISRUPTION

- \bullet General agreement on final scenario
- •● Current profile shrinkage → MHD instability ➙ disruption
- Critical questions involve the evolution to the point where the current profile collapses
- What is the essential physics of the bifurcation or catastrophe
- • "Hard" terminations also seen at times in reversed field pinches

"SOFT LIMITS" SEEN IN OTHER DEVICES

- \bullet In Stellarator, clear evidence of thermal collapse plasma can recover if density is lowered
- \bullet No coupling from Te profile through resistivity and current profile to MHD stability
- •Physics is not so clearly confined to edge
- •RFPs have quenches as well as fast terminations
- Spheromak and FRC don't have density limit data operation at "optimized" density.
- **Doesn't preclude (or require) a common cause**

(Giannone 2000)

DENSITY LIMIT FIRST CHARACTERIZED BY EMPIRICAL SCALING

- First motivated by observation that impure plasmas disrupted at lower densities
- Murakami limit (1976) B_T / $R \propto j_0 \approx P_{Ohmic}$
- Hugill plot ~ 1978
- Leading dependence is with plasma current density

•
$$
n_{LIM} \propto \frac{B}{qR} \approx \frac{I_P}{a^2}
$$
 (Note absence of significant power scaling)

SCALING REFINED BY INCLUSION OF DATA FROM SHAPED TOKAMAKS

RECENT DATA WITH VERY DIFFERENT PLASMA SHAPE IS ROUGHLY FIT BY EMPIRICAL LAW

(Rapp et al, 2000)

• Below around
$$
Z_{\text{EFF}} \sim 2.5
$$
, drops out $(Z_{\text{EFF}} \equiv \frac{\sum n_i Z_i^2}{n_e})$

DENSITY LIMIT IN TOKAMAKS DOES NOT DEPEND STRONGLY ON INPUT POWER

- Power dependence in low confinement mode (L-mode) varies from P 0 - P $^{0.25}$
- Role of neutral beam fueling in power dependence is uncertain

AT HIGH DENSITIES, HIGH CONFINEMENT (H-MODE) DISCHARGES DEGRADE THEN REVERT TO L-MODE

- H-mode plasmas have edge "transport barrier"
- \blacktriangleright Pedestal in T_e, n_e profile
- \bullet **Confinement degradation** can set in as low as 0.3n $_{\rm G}$
- \bullet **Threshold power diverges** as the limit is approached
- H/L transition at 0.8-1.0n_G

STRONG SHAPING DOES ALLOW FOR BETTER CONFINEMENT IN H-MODEAS THE DENSITY IS RAISED TOWARD THE LIMIT.

• Increase in confinement at high triangularity attributed to improved pedestal .2

DETERIORATION IN H-MODE CONFINEMENT IS CORRELATED WITH DROP IN EDGE TEMPERATURE

- *H* and $\nabla T_{CORE} \propto T_{EDGE}$
- \bullet • Constant edge pressure implies $\tau_{\text{\tiny E}}$ independent of density

(Osborne 2000)

• Deterioration in edge confinement can be offsetby internal transport barrier

SO…THE TRICK FOR EXCEEDING THE EMPIRICAL LIMIT - PEAKEDDENSITY PROFILES

- All indications are that limit is due to edge
- \bullet Particles in core apparently don't drive density limit

- •Density profiles not stiff
- Peaked by core fueling, edge pumping, transport modification

GOOD CONFINEMENT WITH DENSITY IN EXCESS OF n ^GIS CORRELATED TO PEAKED DENSITY PROFILE

- Widely seen (Alcator C, TFTR, DIII-D, JET, ASDEX, ASDEX-Upgrade, TEXTOR…)
- Also seen in stellarators (Heliotron E, LHD)
- Edge density apparently never exceeds empirical limit
- \bullet Combination of density peaking and strong plasma shaping open window for high density operation

(Mahdavi 1997)

DENSITY LIMITS IN REVERSED FIELD PINCH

RADIATED POWER PROBABLY NOT CRUCIAL FOR RFP LIMIT

• RFP has both soft (quench-like) and hard (disruption-like) density limits

- \bullet Radiated power increases at high density (low I/N), but
- • **Radiated fraction is never very high**

(*Marrelli 1998)*

STELLARATORS REACH SIMILAR DENSITIES BUT SHOW DIFFERENT

DEPENDENCES

- \bullet Different scaling with power, size
- Shaping: B/qR vs I/a² scaling
- Scaling with $1 = 1/q$
- \bullet For machines with similar size and fields, stellarator will reach about twice the density

both with boronized walls

- •Variation in results
- \bullet Consensus: $n_{CRIT} \propto \left(BP/V \right)^{0.5}$ ∝ / *(Sudo 1990, Giannone 2000)*
- But note evidence for stronger B and weaker size scaling
- Preliminary results from LHD (Large Helical device) support scaling
- \bullet Results generally consistent with radiation/power balance models

"DENSITY LIMIT" IN SPHEROMAK AND FIELD REVERSEDCONFIGURATION (FRC)

- Spheromak and FRC don't have density limit data
- • "Optimized" discharges obtained by scanning fill pressure
- Turns out to be quite close to empirical scaling.
- •Significant?

 PHYSICS MODELS FOR THE DENSITY LIMIT

- **NEUTRALS FUELING AND POWER BALANCE**
- **RADIATION MODELS POWER BALANCE**
- **ROLE OF TRANSPORT PHYSICS**

GLOBAL SCALING BY ITSELF IS AN INSUFFICIENT FOUNDATION FORPREDICTING THE PERFORMANCE OF FUTURE MACHINES

• Scaling does an OK job, may need small corrections for aspect ratio, power, etc,

but

- Covariance in data, may hide dependences $\left(I_P \text{ and } P_{IN} \text{ for example}\right)$
- Misses important local physics **density profiles**
- **Need verified, first principles model**

Big questions

- Where does the catastrophe come from?
- How do we compute the density limit?

ROLE OF NEUTRALS IN THE DENSITY LIMIT

- \bullet Self shielding - limits gas fueling
- \bullet Energy loss via ionization and charge exchange
- • Sets edge gradient length cause unstable pressure profile
- •• Despite this - $n_{\rm G}$ is not describing a fueling limit -

obviated by core fueling

Relatively small increase in density leads to large reduction in ionization inside last closed flux surface

RADIATION POWER BALANCE - EDGE OR SCRAPE-OFF LAYER (SOL)

Motivation

- − Very dirty plasmas don't reach high density
- $P_{RAD} \propto n_e^2 f_Z R(T_e)$ <mark>edge cooling</mark>

Choose physical phenomenon to model

- − Global thermal collapse
- − Radiation condensation
- − Poloidal detachment
- − Divertor detachment
- − Radiation dominated transport ➙ MHD unstable pressure profiles

• Solve coupled equations for energy, momentum, particle balance

(+ Ad hoc assumption to relate "edge" density to core density)

RADIATIVE CONDENSATION - MARFE THRESHOLD

- • $MARFE = MARMar$ wol FE
- At low temperatures $\frac{dR(T)}{dT}$ < 0 *dT* $\,<$
- With insufficient conducted power, radiative collapse occurs
- At constant pressure $T\downarrow$ n \uparrow further increases $n_e^2 R(T_e)$
- In some machines, MARFEs appear just before the density limit

(*Boswell)*

- So… compute density limit by calculating MARFE threshold
- **However MARFEs observed from 0.4 -1.0 n G**
- **Assumes** limit associated with $P_{RAD} = P_{IN}$ (**Seen in some machines**)
- Plasma is no longer coupled thermally to wall
- Compute radial stability from perturbation analysis for radiating layer at $r = a_{p}$
- **Stability criteria** 3 2 *P P^a dn ⁿ da* − $> \frac{3}{2}$ (Assumes density profile fixed)
- **•** Can get result for scaling law assuming ohmic heating and $τ_E ≈ na^2$
- **Transport assumption probably not correct**
- With other assumptions don't get result much like experiments
- **(Not universal PRAD/PIN = 0.3 1.0 at limit)**

DIVERTOR DETACHMENT - SCRAPEOFF LAYER MODEL

- As density 1, Te↓ allows Te gradient along open field lines "divertor marfe"
- At sufficiently low temperatures, **neutral collisions dominatemomentum transport**
- • Leads to drop in plasma pressure at divertor plate
- • Radiation zone moves up to xpoint (x-point marfe)

- •Theory uses detachment threshold as criteria for density limit **(***LaBombard 1994)*
- •**In experiment, detachment occurs from 0.4-1.0 n G**

• Analytic theory - divertor two point model - forced into power law form

• Finds critical separatrix density
$$
n_{SEP} \propto \frac{q_{\perp}^x B^{5/16}}{(qR)^{11/16-x}}
$$
 where $x = \frac{10 - \beta}{16(1 + \beta)}$

• Requires assumption - Bohm transport

- Reasonable agreement with JET, ASDEX-Upgrade data
- • Numerical simulations find limit diverges for ZEFF ➙ 1

IS THERE MORE PHYSICS INVOLVED?

• Problem with radiation models

- Power and impurity dependence too strong $\rightharpoonup n_{LIM} \propto \sqrt{P_{IN}}/(Z_{EFF}-1)$
- − Threshold mechanisms show up well below density limit
- − Transport assumptions: theories are incomplete at best

• Evidence for increased transport as cause of edge cooling

- − Transient transport experiments (Greenwald 1988, Marinak 1993)
- − Fluctuation measurements (Brower 1991)
- Detailed probe measurements in edge (LaBombard 2001)

• **General observations of edge turbulence at high densities**

− Universal result?

TURBULENT TRANSPORT IN EDGE INCREASES WITH COLLISIONALITY

- **Two regimes observed in scrape-off layer (SOL)**
	- −Near-SOL: steep gradients
	- − Far-SOL: flat profiles
- **Particle flux and transport**
	- − Near-SOL: cross-field transport low
	- Far-SOL: cross-field transport high
- **Fluctuation changes character**
	- − Near-SOL: low amplitude, short correlation times and lengths

Far-SOL: large amplitude, bursty, long correlation times

WE CAN VISUALIZE THE FAR-SOL FLUCTUATIONS

- • Images taken with fast CCD camera
- 4 µsec framing time
- \bullet D₂ gas puff: image H α
- Large "blobs" dominate far SOL
- Seen to move poloidally and radially
- Correlation length, correlation time, propagation velocity consistent with probe measurements **(Zweben, Terry 2001)**

TURBULENCE DRIVEN CONVECTION CAN COMPETE WITH PARALLELTRANSPORT

- In far SOL, cross-field transport overwhelms parallel transport
- As density is increased, region of large fluctuations and transport move inward toward separatrix
- Parallel transport $-T_e^{7/2}$ is stable with respect to temperature perturbations
- \bullet Collisionality driven cross-field transport is unstable

(*LaBombard 2000)*

AS THE DENSITY LIMIT IS APPROACHED, HIGH TRANSPORT REGIME CROSSES SEPARATRIX AND MOVES INTO MAIN PLASMA

- • Has the potential to explain range of density limit phenomena
- Once perpendicular transport dominates, stabilizing influence is lost
- •Threshold condition not known
- • Requires that complex transport physics have the "correct" form
- Where does I_P (or B_P) dependence come from?

NEED IMPROVED MODELS FOR EDGE TURBULENCE

- • Unfortunately, theory and models for edge turbulence are not understood well enough yet
- 3D gyro-fluid simulations have found regime of extremely high transport

•
$$
\alpha = -Rq^2d\beta/dr
$$

• $\alpha_D = \rho_s c_s t_0 / L_n L_0$

$$
\propto \left(\frac{T^2}{nL_n}\right) \rightarrow \frac{\lambda}{L_n}
$$

- • Region of high transport consistent with high density, low temperature
- \bullet No quantitative predictions yet

(*Suttrop 1999)*

- Various models proposed progress has been made but none are entirely satisfactory
- Physics strongly coupled cause and effects hard to untangle
- May need combination of turbulent transport and atomic mechanisms
- Lead to investigation of very different physics
- Need to use self-consistent profiles, transport, power balance etc. for all models
- **Substantial progress has been made in understanding this interesting and important problem**
- **It is remarkable that simple empirical laws can capture such complex physics**
- **The similarity of the limit across a wide range of confinement devices is remarkable as well**
- **By peaking the density profile, it is possible to obviate what is essentially and edge limit.**
- **Still, it remains a significant challenge to understand the underlying physics**