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In my first communication' I proposed a system of basic equations of physics. Before
turning to the theory of integrating these equations it seems necessary to discuss
some more general questions of a logical as well as physical nature.

First we introduce in place of the world parameters w, (s = 1,2, 3,4) the most
general real spacetime coordinates x, (s = 1,2, 3,4) by putting

wl =x1, w2=x2, ZU3 =X3, w4=x4’
and correspondingly in place of
18145 18245 18345 —844>

we write simply
814> 824> 834> 844-

The new g,,, (1, v =1, 2, 3, 4) —the gravitational potentials of Einstein—shall then
all be real functions of the real variables x, (s = 1, 2, 3, 4) of such a type that, in the
representation of the quadratic form

G(X1>X27 X3> X4) = Egp,vXuXv (28)
uv

as a sum of four squares of linear forms of the X, three squares always occur with
positive sign, and one square with negative | sign: thus the quadratic form (28) pro-
vides our four dimensional world of the x, with the metric of a pseudo-geometry.
The determinant g of the g, turns out to be negative.

1 This journal, 20 November 1915.

Jiirgen Renn (ed.). The Genesis of General Relativity, Vol. 4
Gravitation in the Twilight of Classical Physics: The Promise of Mathematics.
© 2007 Springer.
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If a curve
x; = x(p) (s=1,2,3,4)

is given in this geometry, where x(p) mean some arbitrary real functions of the
parameter p, then it can be divided into pieces of curves on each of which the
expression
dx, dx, dx; dx,
Yy dp aap

does not change sign: A piece of the curve for which
G(dxs) 0
—_—) >
dp
shall be called a segment and the integral along this piece of curve

r = [ J6Eya
shall be the length of the segment; a piece of the curve for which
G(dxs) 0
—) <
dp
will be called a time line, and the integral

dx,
v=J -6

evaluated along this piece of curve shall be the proper time of the time line; finally a
piece of curve along which

G(dxs) _ 0
% =

shall be called a null line.

To visualize these concepts of our pseudo geometry we imagine two ideal mea-
suring devices: the measuring thread by means of which we are able to measure the
length A of any segment, and secondly the light clock with which we can determine
the proper time of any time line. The thread shows zero and the light clock stops
along every null line, whereas the former fails totally along a time line, and the latter
along a segment. |

First we show that each of the two instruments suffices to compute with its aid the
values of the g, as functions of x,, as soon as a definite spacetime coordinate sys-
tem x, has been introduced. Indeed we choose any set of 10 segments, which all con-
verge on the same world point x,, from different directions, so that this endpoint
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assumes the same parameter value p on each. At this end point we have the equation,
for each of the 10 segments,

(dz_z))z - G(d;g)>, (h=1,2,...,10);

here the left-hand sides are known as soon as we have determined the lengths A by
means of the thread. We introduce the abbreviations

dx(ll) 2 dx(ll)dx;l) dxil) 2 A\ 2
dp/)’ dp dp’ " \dp)’ \dp
Dy = | e e e
dx(llO) 2 dx(IIO)dx(ZIO) dxilo) 2 d}\'(l()) 2
dp )’ dp dp "\ dp )\ dp
X3, XX, ... X u
so that clearly
D(0)
X) = = 2
G(X,) D’ (29)
Ju

whereby also the condition on the directions of the chosen 10 segments at the point
x(p)
aD
—=0
ou =

is seen to be necessary.

When G has been calculated according to (29), the use of this procedure for any
11th segment ending at x(p) would yield the equation

d)»(”) 2 . dxim
() =)

and this equation would then both verify the correctness of the instrument and con-
firm experimentally that the postulates of the theory apply to the real world.

Corresponding reasoning applies to the light clock. |

The axiomatic construction of our pseudo-geometry could be carried out without
difficulty: first an axiom should be established from which it follows that length resp.
proper time must be integrals whose integrand is only a function of the x, and their
first derivatives with respect to the parameter; suitable for such an axiom would be
the property of development of the thread or the well-known envelope theorem for
geodesic lines. Secondly an axiom is needed whereby the theorems of the pseudo-
Euclidean geometry, that is the old principle of relativity, shall be valid in infinitesi-
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mal regions; for this the axiom put down by W. Blaschke? would be particularly suit-
able, which states that the condition of orthogonality for any two directions—
segments or time lines—shall always be a symmetric relation.

Let us briefly summarize the main facts that the Monge-Hamilton theory of differ-
ential equations teaches us for our pseudo-geometry.

With every world point x, there is associated a cone of second order, with vertex
at x,, and determined in the running point coordinates X by the equation

GX ) —xp, Xy = X9, X3 = X3, X4 —xy) = 0;

this shall be called the null cone belonging to the point x,. The totality of null cones
form a four dimensional field of cones, which is associated on the one hand with

9,99

“Monge’s” differential equation

dx, dx, dx; dx, 0
@ ap) T
and on the other hand with “Hamilton’s” partial differential equation

daf df df df, _
e g dvo ) = O (30)

where H denotes the quadratic form

HU,, U, Uy, Uy = Eg’WUMUV
uv

reciprocal to G. The characteristics of Monge’s and at the same time those of Hamil-
ton’s partial differential equation (30) are the geodesic null lines. All the geodesic
null lines originating at one particular world point a, (s = 1,2, 3,4) generate a three
dimensional point manifold, which | shall be called the time divide belonging to the
world point a,. This divide has a node at a,, whose tangent cone is precisely the null
cone belonging to a,. If we transform the equation of the time divide into the form

.X4 = (p(-xls .X2, X3),
then
f = xg—0(xy, x5 x3)

is an integral of Hamilton’s differential equation (30). All the time lines originating at
the point a, remain totally in the interior of that four dimensional part of the world
whose boundary is the time divide of a;.

After these preparations we turn to the problem of causality in the new physics.

2 “Réumliche Variationsprobleme mit symmetrischer Transversalititsbedingung.” Leipziger Berichte,
Math.-phys. Kl. 68 (1916) p. 50.
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Up to now all coordinate systems x,, that result from any one by arbitrary trans-
formation have been regarded as equally valid. This arbitrariness must be restricted
when we want to realize the concept that two world points on the same time line can
be related as cause and effect, and that it should then no longer be possible to trans-
form such world points to be simultaneous. In declaring x, as the frue time coordi-
nate we adopt the following definition:

A true spacetime coordinate system is one for which the following four inequali-
ties hold, in addition to g <0:

¢ g 811 812 813
g1 >0, g“ g12 >0, 91 820 &2z | > 0 844 <0. (3D
21 822
831 832 833

A transformation that transforms one such spacetime coordinate system into another
true spacetime coordinate system shall be called a true spacetime coordinate transfor-
mation.

The four inequalities mean that at any world point a, the associated null cone
excludes the linear space

X, = ay,
but contains in its interior the line
xl = al, X2 = (12, X3 = a3;

the latter line is therefore always a time line. |
Let any time line x, = x(p) be given; because 58]

G(dxs) 0
E <

it follows that in a true spacetime coordinate system we must always have

and therefore that along a time line the true time coordinate x, must always increase
resp. decrease. Because a time line remains a time line upon every coordinate trans-
formation, therefore two world points along one time line can never be given the
same value of the time coordinate x, through a true spacetime transformation; that
is, they cannot be transformed to be simultaneous.

On the other hand, if the points of a curve can be truly transformed to be simulta-
neous, then after this transformation we have for this curve

X, = const., that is — =0,
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therefore

dx dx, dx
G - = _U_V, > = 17 273 5
(dp) MEV guv dp dp (M v )

and here the right side is positive because of the first three of our inequalities (31); the
curve therefore characterizes a segment.

So we see that the concepts of cause and effect, which underlie the principle of
causality, also do not lead to any inner contradictions whatever in the new physics, if
we only take the inequalities (31) always to be part of our basic equations, that is if
we confine ourselves to using true spacetime coordinates.

At this point let us take note of a special spacetime coordinate system that will
later be useful and which I will call the Gaussian coordinate system, because it is the
generalization of the system of geodesic polar coordinates introduced by Gauss in the
theory of surfaces. In our four-dimensional world let any three-dimensional space be
given so that every curve confined to that space is a segment: a space of segments, as
I would like to call it; | let x;, x,, x; be any point coordinates of this space. We now
construct at every point x,, x,, x5 of this space the geodesic orthogonal to it, which
will be a time line, and on this line we mark off x, as proper time; the point in the
four-dimensional world so obtained is given coordinate values x;x,x;x,. In these
coordinates we have, as is easily seen,

1,2,3
2
GX) = 3 g XX, - X, (32)
wv

that is, the Gaussian coordinate system is characterized analytically by the equations
814 =0, 8u =0, 8 =0, 844 =0. (33)

Because of the nature of the three dimensional space x, = 0 we presupposed, the
quadratic form on the right-hand side of (32) in the variables X |, X,, X5 is necessar-
ily positive definite, so the first three of the inequalities (31) are satisfied, and since
this also applies to the fourth, the Gaussian coordinate system always turns out to be
a true spacetime coordinate system.

We now return to the investigation of the principle of causality in physics. As its
main contents we consider the fact, valid so far in every physical theory, that from a
knowledge of the physical quantities and their time derivatives in the present the
future values of these quantities can always be determined: without exception the
laws of physics to date have been expressed in a system of differential equations in
which the number of the functions occurring in them was essentially the same as the
number of independent differential equations; and thus the well-known general
Cauchy theorem on the existence of integrals of partial differential equations directly
offered the rationale of proof for the above fact.

Now, as I emphasized particularly in my first communication, the basic equations
of physics (4) and (5) established there are by no means of the type characterized
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above; rather, according to Theorem I, four of them are a consequence of the rest: we
regarded the four Maxwell equations (5) as a consequence of the ten gravitational
equations (4), and so we have for the 14 potentials g,,,, ¢, only 10 equations (4) that
are essentially independent of each other. |

As soon as we maintain the demand of general invariance for the basic equations
of physics the circumstance just mentioned is essential and even necessary. Because
if there were further invariant equations, independent of (4), for the 14 potentials,
then introduction of a Gaussian coordinate system would lead for the 10 physical
quantities as per (33),

Suv (W, v=1,2,3), q, (s=1,2,3,4)

to a system of equations that would again be mutually independent, and mutually
contradictory, because there are more than 10 of them.

Under such circumstances then, as occur in the new physics of general relativity,
it is by no means any longer possible from knowledge of physical quantities in
present and past to derive uniquely their future values. To show this intuitively on an
example, let our basic equations (4) and (5) of the first communication be integrated
in the special case corresponding to the presence of a single electron permanently at
rest, so that the 14 potentials

gpw = guv(xl’ X2 x3)
qs = qs(xl’ x27 )C3)
become definite functions of x,, x,, x5, all independent of the time x,, and in addi-

tion such that the first three components r, r,, r5 of the four-current density vanish.
Then we apply the following coordinate transformation to these potentials:

X, = x' for x', =<0
L
¥
x, =x'+e for x',>0
!
X, = x'y
X3 = X'5
!
X4 = X4.

For x'y<0 the transformed potentials g',,, ¢'; are the same functions of
x'y, x'y, x5 asthe g, g, of the original variables x;, x,, x5, whereas the g',,,,, ¢’
for x', >0 depend in an essential way also on the time coordinate x',; that is, the
potentials g',,,, ¢', represent an electron that is at rest until x’y = 0, but then puts
its components into motion. |

Nonetheless I believe that it is only necessary to formulate more sharply the idea
on which the principle of general relativity3 is based, in order to maintain the princi-
ple of causality also in the new physics. Namely, to follow the essence of the new rel-
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ativity principle we must demand invariance not only for the general laws of physics,
but we must accord invariance to each separate statement in physics that is to have
physical meaning—in accordance with this, that in the final analysis it must be possi-
ble to establish each physical fact by thread or light clock, that is, instruments of
invariant character. In the theory of curves and surfaces, where a statement in a cho-
sen parametrization of the curve or surface has no geometrical meaning for the curve
or surface itself, if this statement does not remain invariant under any arbitrary trans-
formation of the parameters or cannot be brought to invariant form; so also in physics
we must characterize a statement that does not remain invariant under any arbitrary
transformation of the coordinate system as physically meaningless. For example, in
the case considered above of the electron at rest, the statement that, say at the time
x, = 1 this electron is at rest, has no physical meaning because this statement is not
invariant.

Concerning the principle of causality, let the physical quantities and their time
derivatives be known at the present in some given coordinate system: then a state-
ment will only have physical meaning if it is invariant under all those transforma-
tions, for which the coordinates just used for the present remain unchanged; I
maintain that statements of this type for the future are all uniquely determined, that
is, the principle of causality holds in this form:

From present knowledge of the 14 physical potentials g, q, all statements
about them for the future follow necessarily and uniquely provided they are physi-
cally meaningful.

To prove this proposition we use the Gaussian spacetime coordinate system.
Introducing (33) into the basic equations (4) of the first communication yields for the
10 potentials |

8uwv (M v=1,2,3), q, (s=1,2,3,4) (34

a system of as many partial differential equations; if we integrate these on the basis of
the given initial values at x, = 0, we find uniquely the values of (34) for x, > 0.
Since the Gaussian coordinate system itself is uniquely determined, therefore also all
statements about those potentials (34) with respect to these coordinates are of invari-
ant character.

The forms, in which physically meaningful, i.e. invariant, statements can be
expressed mathematically are of great variety.

First. This can be done by means of an invariant coordinate system. Like the
Gaussian system used above one can apply the well-known Riemannian one, as well
as that spacetime coordinate system in which electricity appears at rest with unit cur-
rent density. As at the end of the first communication, let f(g) denote the function
occurring in Hamilton’s principle and depending on the invariant

3 In his original theory, now abandoned, A. Einstein (Sitzungsberichte der Akad. zu Berlin, 1914,
p. 1067) had indeed postulated certain 4 non-invariant equations for the Buv: in order to save the cau-
sality principle in its old form.
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ki
q = E‘]k‘hg >
&l
then

RN AC)
aq,

is the four-current density of electricity; it represents a contravariant vector and there-
fore can certainly be transformed to (0, 0, 0, 1), as is easily seen. If this is done, then
from the four equations

af(Q)zo (S: 1’2’3)’ af(CI) =1
GQS aq4

the four components of the four-potential ¢, can be expressed in terms of the g,
and every relation between the g, in this or in one of the first two coordinate sys-
tems is then an invariant statement. For particular solutions of the basic equations
there may be special invariant coordinate systems; for example, in the case treated
below of the centrally symmetric gravitational field r, 9, @, ¢ form an invariant sys-
tem of coordinates up to rotations.

Second. The statement, according to which a coordinate system can be found in
which the 14 potentials g,,, ¢, have certain definite values in the future, or fulfill
certain definite conditions, is always an invariant and therefore a physically meaning-
ful one. The mathematically invariant expression for | such a statement is obtained by
eliminating the coordinates from those relations. The case considered above, of the
electron at rest, provides an example: the essential and physically meaningful content
of the causality principle is here expressed by the statement that the electron which is
at rest for the time x, =0 will, for a suitably chosen spacetime coordinate system,
also remain at rest in all its parts for the future x, > 0.

Third. A statement is also invariant and thus has physical meaning if it is sup-
posed to be valid in any arbitrary coordinate system. An example of this are Ein-
stein’s energy-momentum equations having divergence character. For, although
Einstein’s energy does not have the property of invariance, and the differential equa-
tions he put down for its components are by no means covariant as a system of equa-
tions, nevertheless the assertion contained in them, that they shall be satisfied in any
coordinate system, is an invariant demand and therefore it carries physical meaning.

According to my exposition, physics is a four-dimensional pseudo-geometry,
whose metric g, is connected to the electromagnetic quantities, i.e. to the matter, by
the basic equations (4) and (5) of my first communication. With this understanding,
an old geometrical question becomes ripe for solution, namely whether and in what
sense Euclidean geometry —about which we know from mathematics only that it is a
logical structure free from contradictions —also possesses validity in the real world.

The old physics with the concept of absolute time took over the theorems of
Euclidean geometry and without question put them at the basis of every physical the-
ory. Gauss as well proceeded hardly differently: he constructed a hypothetical non-
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Euclidean physics, by maintaining the absolute time and revoking only the parallel
axiom from the propositions of Euclidean geometry; a measurement of the angles of a
triangle of large dimensions showed him the invalidity of this non-Euclidean physics.

The new physics of Einstein’s principle of general relativity takes a totally differ-
ent position vis-a-vis geometry. It takes neither Euclid’s nor any other particular
geometry a priori as basic, in order to deduce from it the proper laws of physics, but,
as I showed in my first communication, | the new physics provides at one fell swoop
through one and the same Hamilton’s principle the geometrical and the physical laws,
namely the basic equations (4) and (5), which tell us how the metric 8. —at the
same time the mathematical expression of the phenomenon of gravitation—is con-
nected with the values ¢, of the electrodynamic potentials.

Euclidean geometry is an action-at-a-distance law foreign to the modern physics:
By revoking the Euclidean geometry as a general presupposition of physics, the the-
ory of relativity maintains instead that geometry and physics have identical character
and are based as one science on a common foundation.

The geometrical question mentioned above amounts to the investigation, whether
and under what conditions the four-dimensional Euclidean pseudo-geometry

gn =1, 8»n =1, 8 =1, 8u = -1

35
8uv =0 (w=v) G

is a solution, or even the only regular solution, of the basic physical equations.
The basic equations (4) of my first communication are, due to the assumption (20)
made there:
aNgL
[A/é K] + A/gl =0,

aguv

Whel‘e
uv A 2 v -

When the values (35) are substituted, we have

[VgK]w = 0 (36)
and for
q, =0 (s=1,2,3,4)
we have
gL _ 0
6g”v ’

that is, when all electricity is removed, the pseudo-Euclidean geometry is possible.
The question whether it is also necessary in this case, i.e. whether—or under certain
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additional conditions—the values (35), and those values of the Suv resulting from
coordinate transformation of the latter, are the only regular solutions of the equations
(36) is a mathematical problem not to be discussed here in general. Instead I confine
myself | to presenting some thoughts concerning this problem in particular.

For this we return to the original world coordinates of my first communication

w; = xq, W, = X,, wy = X3, w, = ixy,

and give the corresponding meaning to the g,,,,.
In the case of the pseudo-Euclidean geometry we have

gpw = 6uv’

where

dp =1, dyy =0 (u=v).

For every metric in the neighborhood of this pseudo-Euclidean geometry the ansatz
Suv = Oy Heh,, + ... (37)

is valid, where ¢ is a quantity converging to zero, and &, are functions of the w;. I
make the following two assumptions about the metric (37):

L. The h,,, shall be independent of the variable w,.
II. The h,,, shall show a certain regular behavior at infinity.

Now, if the metric (37) is to satisfy the differential equation (36) for all € then it
follows that the h,, must necessarily satisfy certain linear homogeneous partial dif-
ferential equations of second order. If we substitute, following Einstein®

1
Iy = k=580 D ke (k= kyy) (38)

and assume among the 10 functions &, the four relations

dk
2 =0 =1,2,3,4 3
Sw 0 =123 (39)

then these differential equations become:
Dk, =0, (40)

where the abbreviation

4 “Naherungsweise Integration der Feldgleichungen der Gravitation.” Berichte d. Akad. zu Berlin 1916,
p. 688.
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2
o=3%-2

2
5 0w

has been used.
Because of the ansatz (38) the relations (39) are restrictive assumptions for the

functions h,,,; however I will | show how one can always achieve, by suitable infini-

tesimal transformation of the variables w,, w,, ws, w,, that those restrictive assump-
tions are satisfied for the corresponding functions h’IW after the transformation.

To this end one should determine four functions @,, ¢,, @3, ¢,, which satisfy
respectively the differential equations

19 “
= —— - . 41
Hy 2awuzhw E dw, @0
v v
By means of the infinitesimal transformation
w, = W +EQ,,

N
8,y becomes
! 8cpa acpol
= + i o e
8wy = & 82&”3% 826,““6&)\,
or because of (37) it becomes

- !
8wy = 6p.v+8h wy Foeees

where I have put
o p g Dy, 9%
wy o, ow,’

If we now choose
! ] ’
kpw =h uv §6MVEh 55°

S

then these functions satisfy Einstein’s condition (39) because of (41), and we have
, 1
Wy = k=500 Dk (kyy = k).

The differential equations (40), which must be valid according to the above argument
for the kIW we found, become due to assumption |

2 2 2
a kw_'_a kl;\,+a k;;v

2 =0,
ow; 0w, ows
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and, since assumption Il—mutatis mutandis—allows the conclusion that the k,
approach constants at infinity, it follows that these must be constant in general, that
is: By varying the metric of the pseudo-Euclidean geometry under the assumptions I
and 11 it is not possible to obtain a regular metric that is not likewise pseudo-Euclid-
ean and which also corresponds to a world free of electricity. |

The integration of the partial differential equations (36) can be performed in yet
another case, first treated by Einstein® and by Schwarzschild.® In the following 1
present for this case a procedure that makes no assumptions about the gravitational
potentials g, at infinity, and which moreover offers advantages for my later investi-
gations. The assumptions about the g, are the following:

1. The metric is represented in a Gaussian coordinate system, except that g,, is left
arbitrary, i.e. we have

814 =0, 84 =0, 83 = 0.

2. The g, are independent of the time coordinate x,.

3. The gravitation g, is centrally symmetric with respect to the origin of coordi-
nates.

According to Schwarzschild the most general metric conforming to these assump-
tions is represented in polar coordinates, where

rcosV

wy

w, = rsindcosg

w3 = rsinYsing
wy =1,
by the expression
F(r)dr? + G(r)(d9? + sin20de?) + H(r)dI? (42)

where F(r), G(r), H(r) are still arbitrary functions of r. If we put

r = JG@),

then we are equally justified in interpreting r*, 9, @ as spatial polar coordinates. If
we introduce r* in (42) instead of r and then eliminate the sign *, the result is the
expression

M(r)dr? + r2d9? + r2sin29do? + W(r)di?, (43)

5 “Perihelbewegung des Merkur.” Situngsber. d. Akad. zu Berlin. 1915, p. 831.
6  “Uber das Gravitationsfeld eines Massenpunktes.” Sitzungsber. d. Akad. zu Berlin. 1916, p. 189.
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where M(r), W(r) mean the two essential, arbitrary functions of r. The question is
whether and how these can be determined in the most general way so that the differ-
ential equations (36) enjoy satisfaction. |

To this end the well-known expressions K,,, K given in my first communication
must be calculated. The first step in this is the derivation of the differential equations
for geodesic lines by variation of the integral

dr\? L@, rdg)? di\?
f<M<d_p> +r (5) + r2sin ﬁ<d_p> + W(d_p) )dp.
As Lagrange equations we obtain these:

d2r 1M’<dr)2_ r (dﬁ>2—Lsin2ﬂ(d—cP)2 1W’<dl)2 _ 0.

ap? Tam\dp) “m\ap) ~m dp) ~2M\dp
2 2
@+gﬂ@—sinﬁcosﬁ(d—m> =0,

dp? rdpdp dp

d*¢p 2drdy dddy
E-i-rdpdp-i-zcor&dpdp_ ’

el wardl

dp? Wdpdp -

here and in the following calculation the sign ' denotes the derivative with respect to
r. By comparison with the general differential equations of geodesic lines:

d*w dw, dw
25+2{Lw}d_udv:0,
dp*> & | s |dp dp

v
we obtain for the bracket symbols {M } the following values, whereby those that
vanish are omitted: §

1) am 22)  r 3] r 29
1 [ 2M” [ M’ N7
44 1W 12 1 33 :

{1}__§M_, {2}_;, {2}_—smﬁcosﬁ,

sfer oo 3

With these we form:
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K = k=W 1Ww- M 1MW
D8 K MW 2MW2 "2 2MPW

N

2,2 LW
2 r2M rMW’
Because
Jg = JMWr2sin®
we have

207\ ! !
K = {(r W ) —ZrMm—2A/MW+2Jg}sinﬁ,

M32

MW

and if we put

r r—m
M = , W= w—-,
r—m r

where now m and w are the unknown functions of r, we finally obtain

KA/é = {(%) / - 2wm’}sinﬁ,

[70] | so that the variation of the quadruple integral

[[[[x .5 dr a0 d al

is equivalent to the variation of the single integral
fwm’dr

and leads to the Lagrange equations

(44)
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It is easy to convince oneself that these equations indeed imply that all K, vanish;
they therefore represent essentially the most general solution of equations (36) under
the assumptions 1.,2., 3., we made. If we take as integrals of (44) m = a, where a
is a constant, and w = 1, which evidently is no essential restriction, then for [ = it
(43) results in the desired metric in the form first found by Schwarzschild

r

Gldr, b, dg, dI) = ——

dr? + r2d9? + rsin*Ddg? - —=dI’. (45)

The singularity of the metric at r = 0 disappears only if we take o = 0, i.e. the
metric of the pseudo-Euclidean geometry is the only regular metric that corresponds
to a world without electricity under the assumptions 1.,2.,3.

If =0, then r = 0 and, for positive a also r = o, prove to be places where
the metric is not regular. Here I call a metric or gravitational field g, regular at
some place if it is possible to introduce by transformation with unique inverse a coor-
dinate system for which the corresponding functions g',, at that place are regular,
that is they are continuous and arbitrarily differentiable at the place and its neighbor-
hood, and have a determinant g’ that differs from zero.

Although in my view only regular solutions of the basic physical equations repre-
sent reality directly, still it is precisely the solutions with places of non-regularity that
are an important mathematical instrument for approximating characteristic regular
solutions—and in this sense, following Einstein and Schwarzschild, the metric (45),
not regular at r = 0 and r = a, is to be viewed as the expression for | gravity of a
centrally symmetric mass distribution in the neighborhood of the 0rigin7. In the same
sense a point mass is to be understood as the limit of a certain distribution of electric-
ity about one point, but I refrain at this place from deriving its equations of motion
from my basic physical equations. A similar situation prevails for the question about
the differential equations for the propagation of light.

Following Einstein, let the following two axioms serve as a substitute for a deriva-
tion from the basic equations:

The motion of a point mass in a gravitational field is described by a geodesic line,
which is a time line®.

The motion of light in a gravitational field is described by a geodesic null line.

Because the world line representing the motion of a point mass shall be a time
line, it is easily seen to be always possible to bring the point mass to rest by true
spacetime transformations, i.e. there are frue spacetime coordinate systems with
respect to which the point mass remains at rest.

The differential equations of geodesic lines for the centrally symmetric gravita-
tional field (45) arise from the variational problem

7  To transform the locations » = o to the origin, as Schwarzschild does, is not to be recommended in
my opinion; Schwarzschild’s transformation is moreover not the simplest that achieves this goal.
8  This last restrictive addition is to be found neither in Einstein nor in Schwarzschild.

[71]
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f(La(L) () s rsinen(49) - () Yap = 0,

and become, by well-known methods:

rrg(j—;)z+rz(;l,—gy+r2sinzﬁ<3—c£>2—r_ra<j—;>2 = A, (46)
%(ﬂ%) _r2sim‘}cosﬁ(3—c;>2 =0, 47)
rzsin2ﬁili—c£ = B, (48)

r—odt _ c. )

rodp
where A, B, C denote constants of integration. |
I first prove that the orbits in the rO@- space always lie in planes passing
through the center of the gravitation.

To this end we eliminate the parameter p from the differential equations (47) and
(48) to obtain a differential equation for O as a function of ¢. We have the identity

i(rzdﬂ> _d (rzd_ﬁd_q’>

dp\" dp) ~ dp\' do dp
p p % 2 i 2 (50)
drdd L d>O\ rdo d9d2g
= (p,8r4Y | 247U\ (dQ 24Va" Q.
( rdcpdcp+r dcpz) (dp) T do dp?

On the other hand, differentiation of (48) with respect to p gives:

2 2
<2r£sinzﬁ+ 2r2sinﬁcosﬁd—ﬂ) (d_cp) +r2sin2ﬁd—(p =0,
do do/ \dp dp?

2
and if we take from this the value of f;—(zp and substitute on the right of (50), it
becomes p

d ([ ,d9 d*9 dO\ A\ ,/de\?

) = (532l )4

dp(r dp) <dcp2 N ) \ap

Thus equation (47) takes the form:

2 2
d—ﬁ - 200tﬁ<d—ﬁ> = sinYcosV,
dop? dyg

a differential equation whose general integral is
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sindcos(g +a)+ bcosV = 0,

where a and b denote constants of integration.

This provides the desired proof, and it is therefore sufficient for further discussion
of geodesic lines to consider only the value 9 = 2/x. Then the variational problem
simplifies as follows

2 2 )
of ol ) -5 o -0

and the three differential equations of first order that arise from it are |

roodr\? dp\> r—aydn?

—) +r2(=) - — = A, 51
r—oc<dp> " (dp) r (dp) ©h
rl’ci(—p = B, (52)

dp
roodt o (53)

r dp

The Lagrange differential equation for r

d/ 2r dr o /dr\? dp\? o/ dr?

— —) + —) =2r(=) +=(=—) =0 54
dp(r—adp) (r—oc)2<dp> r(dp) r2<dp> (>4

is necessarily related to the above equations, in fact if we denote the left sides of (51),
(52), (53), (54) with [1], [2], [3], [4] respectively we have identically

d\] _,dg d12] , ,dt di3] _ dr

dp “dp dp " “dp dp ~ dp

[4]. (35)

By choosing C = 1, which amounts to multiplying the parameter p by a con-
stant, and then eliminating p and ¢ from (51), (52), (53) we obtain that differential
equation for p = 1/r as a function of ¢ found by Einstein and Schwarzschild,
namely:

dp\* _ 1+A_Ac e 3
(d(p> = - PP rapt (56)

This equation represents the orbit of the point mass in polar coordinates; in first
approximation for oo = 0 with B = Jab, A = —1+aa the Kepler motion fol-
lows from it, and the second approximation than leads to the most shining discovery
of the present: the calculation of the advance of the perihelion of Mercury.
According to the axiom above the world line for the motion of a point mass shall
be a time line; from the definition of the time line it thus follows that always A <0.

(73]
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We now ask in particular whether a circle, i.e. ¥ = const. can be the orbit of a
motion. The identity (55) shows that in this case—because of dr/dp = 0 —equation
(54) is by no means a consequence of (51), (52), (53); the latter three equations there-
fore are insufficient to determine the motion; instead the necessary equations to be
satisfied are (52), (53), (54). From (54) it follows that |

do\?  a/dn?
~2r(g) +al@) = S
or that for the speed v on the circular orbit

2

V2 = (r%f) = 2% (58)

On the other hand, since A <0, (51) implies the inequality

dp\? r—a/dn?
2[4\ hdd 0 5
’ <dp> r <dp> < (59
or by using (57)
3a
r>=-. (60)

With (58) this implies the inequality for the speed of the mass point moving on a cir-
cle’

V< —. (61)
The inequality (60) allows the following interpretation: From (58) the angular

speed of the orbiting point mass is
dp _ | o
dt 2r3’

So if we want to introduce instead of r, ¢ the polar coordinates of a coordinate sys-
tem co-rotating about the origin, we only have to replace

o
b + [—t.
@ y @ /2r3

After the corresponding spacetime transformation the metric

9  Schwarzschild’s (loc. cit.) claim that the speed of the point mass on a circular orbit approaches the
limit 1/,/2 as the orbit radius is decreased corresponds to the inequality r = and should not be
regarded as accurate, according to the above.
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T _ar?+ r2dg? - = 2ar
r—ao r
becomes
T + r2dg? + J2ar do dt + (ﬁ —"0‘>dt2.
r—ao 2r r

| Here the inequality g,, <O is satisfied due to (60), and since the other inequali-
ties (31) are satisfied, the transformation under discussion of the point mass to rest is
a true spacetime transformation.

On the other hand, the upper limit 1/ ﬁ found in (61) for the speed of a mass
point on a circular orbit also has a simple interpretation. According to the axiom for
light propagation this propagation is represented by a null geodesic. Accordingly if
weput A = 0 in (51), instead of the inequality (59) the result for circular light prop-
agation is the equation

2 2
A4S o

together with (57) this implies for the radius of the light’s orbit:

_ 3a
2

and for the speed of the orbiting light the value that occurs as the upper limit in (61):

In general we find for the orbit of light from (56) with A = O the differential
equation

dpy? _ 1 2 3

b e : 2
(dcp) g Prers (62)
for B = g#a it has the circle r = 37(1 as a Poincaré “cycle” —corresponding to

the circumstance that thereupon p — 33 is a double factor of the right-hand side.
a

Indeed in this case—and correspondingly for the more general equation (56)—the
differential equation (62) possesses infinitely many integral curves, which approach
that circle as the limit of spirals, as demanded by Poincaré’s general theory of cycles.

If we consider a light ray approaching from infinity and take o small compared
to the ray’s distance of closest approach from the center of gravitation, then the light
ray has approximately the form of a hyperbola with focus at the center.!? |

[75]
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A counterpart to the motion on a circle is the motion on a straight line that passes
through the center of gravitation. We obtain the differential equation for this motion if
we set @ = 0 in (54) and then eliminate p from (53) and (54); the differential equa-
tion so obtained for r as a function of ¢ is

d’r 3a (dr>2+r(r—a):0 63)

a2 2r(r—a)\dt 2r3
with the integral following from (51)
dr\? r—oy? r—oy’
@ =(57) (%) 0
According to (63) the acceleration is negative or positive, i.e. gravitation acts attrac-
tive or repulsive, according as the absolute value of the velocity

lr—-a
<_.._-

B

dr
dt

or
lr—-a

> —
A@r

For light we have because of (64)

dr
dt

r—a
_7
r

light propagating in a straight line towards the center is always repelled, in agreement
with the last inequality; its speed increases fromO atr = a tol at r = .
When a as well as dr/dt are small, (63) becomes approximately the Newtonian
equation
d’r _ ol

darr ~ 2r%

10 A detailed discussion of the differential equations (56) and (62) will be the task of a communication
by V. Fréedericksz to appear in these pages.



